Patents by Inventor Cheng-Yi Wu
Cheng-Yi Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11658032Abstract: A method includes providing a semiconductor structure having an active region and an isolation structure adjacent to the active region, the active region having source and drain regions sandwiching a channel region for a transistor, the semiconductor structure further having a gate structure over the channel region. The method further includes etching a trench in one of the source and drain regions, wherein the trench exposes a portion of a sidewall of the isolation structure, epitaxially growing a first semiconductor layer in the trench, epitaxially growing a second semiconductor layer over the first semiconductor layer, changing a crystalline facet orientation of a portion of a top surface of the second semiconductor layer by an etching process, and epitaxially growing a third semiconductor layer over the second semiconductor layer after the changing of the crystalline facet orientation.Type: GrantFiled: March 18, 2021Date of Patent: May 23, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Wen-Chin Chen, Cheng-Yi Wu, Yu-Hung Cheng, Ren-Hua Guo, Hsiang Liu, Chin-Szu Lee
-
Publication number: 20230066482Abstract: A semiconductor device is provided, which contains a memory bank including M primary word lines and R replacement word lines, a row/column decoder, and an array of redundancy fuse elements. A sorted primary failed bit count list is generated in a descending order for the bit fail counts per word line. A sorted replacement failed bit count list is generated in an ascending order of the M primary word lines in an ascending order. The primary word lines are replaced with the replacement word lines from top to bottom on the lists until a primary failed bit count equals a replacement failed bit count or until all of the replacement word lines are used up. Optionally, the sorted primary failed bit count list may be re-sorted in an ascending or descending order of the word line address prior to the replacement process.Type: ApplicationFiled: November 7, 2022Publication date: March 2, 2023Inventors: Chien-Hao HUANG, Cheng-Yi WU, Katherine H. CHIANG, Chung-Te LIN
-
Publication number: 20230011756Abstract: A disclosed high-density capacitor includes a top electrode having an electrically conducting material forming a three-dimensional structure. The three-dimensional structure includes a plurality of vertical portions extending in a vertical direction and horizontal portions, that are interleaved within the vertical portions and extend in a first horizontal direction. The high-density capacitor further includes a dielectric layer formed over the top electrode, and a bottom electrode including an electrically conducting material, such that the bottom electrode is separated from the top electrode by the dielectric layer. Further, the bottom electrode envelopes some of the plurality of vertical portions of the top electrode. The disclosed high-density capacitor further includes a plurality of support structures that are aligned with the first horizontal direction such that the horizontal portions of the top electrode are formed under respective support structures.Type: ApplicationFiled: March 10, 2022Publication date: January 12, 2023Inventors: Cheng-Yi WU, Katherine H. CHIANG, Chung-Te LIN, Hsin-Yu LAI, Yun-Feng KAO
-
Publication number: 20220379311Abstract: A cell purification module, configured to purify multiple cells from a fluid sample is provided. The cell purification module includes a hollow column, multiple hollow fiber membranes, at least one first magnetic component, a fluid sample inlet end, and a fluid sample outlet end. The hollow column has a first opening, a second opening, and an accommodating space connecting the first opening and the second opening. The hollow fiber membranes are disposed in the accommodating space and each hollow fiber membrane has multiple pores. The first magnetic component is disposed at a periphery of the hollow column. The fluid sample inlet end and the fluid sample outlet end are respectively disposed at two ends of the hollow column. The hollow fiber membranes extend in an axial direction of the hollow column, and are arranged in a radial direction of the hollow column. A cell purification system is also provided.Type: ApplicationFiled: May 26, 2022Publication date: December 1, 2022Applicant: Industrial Technology Research InstituteInventors: Lih-Tao Hsu, Shen-Hua Peng, Cheng-Yi Wu, Jeng-Liang Kuo, Meng-Hsueh Lin, Chih-Chieh Huang, Wei-Lin Yu, Hui-Ting Huang
-
Publication number: 20220383974Abstract: A method of testing a non-volatile memory (NVM) array includes obtaining a current distribution of a subset of NVM cells of the NVM array, the current distribution including first and second portions corresponding to respective logically high and low states of the subset of NVM cells, programming an entirety of the NVM cells of the NVM array to one of the logically high or low states, determining an initial bit error rate (BER) by performing first and second pass/fail (P/F) tests on each NVM cell of the NVM array, and using the current distribution to adjust the initial BER rate. Each of obtaining the current distribution, programming the entirety of the NVM cells, and performing the first and second P/F tests is performed while the NVM array is heated to a target temperature.Type: ApplicationFiled: August 10, 2022Publication date: December 1, 2022Inventors: Chien-Hao HUANG, Katherine H. CHIANG, Cheng-Yi WU, Chung-Te LIN
-
Publication number: 20220366996Abstract: A location of at least one fail bit to be repaired in a memory block of a memory is extracted from at least one memory test on the memory block. An available repair resource in the memory for repairing the memory block is obtained. It is checked, using machine learning, whether the at least one fail bit is unrepairable, according to the location of the at least one fail bit, and the available repair resource. When the checking indicates that the at least one fail bit is not unrepairable, it is determined whether a Constraint Satisfaction Problem (CSP) containing a plurality of constraints is solvable. The constraints correspond to the location of the at least one fail bit in the memory block, and the available repair resource. In response to determining that the CSP is not solvable, the memory block is marked as unrepairable or the memory is rejected.Type: ApplicationFiled: July 26, 2022Publication date: November 17, 2022Inventors: Katherine H. CHIANG, Chien-Hao HUANG, Cheng-Yi WU, Chung-Te LIN
-
Publication number: 20220356571Abstract: A method of making a sealing article that includes a body and a coating layer disposed on at least one surface of the body. The body comprises a polymeric elastomer such as perfluoroelastomer or fluoroelastomer. The coating layer comprises at least one metal. The sealing article may be a seal, a gasket, an O-ring, a T-ring or any other suitable product. The sealing article is resistant to ultra-violet (UV) light and plasma, and may be used for sealing a semiconductor processing chamber.Type: ApplicationFiled: July 22, 2022Publication date: November 10, 2022Inventors: Peng-Cheng HONG, Jun-Liang Pu, W.L. Hsu, Chung-Hao Kao, Chia-Chun Hung, Cheng-Yi Wu, Chin-Szu Lee
-
Patent number: 11495314Abstract: A semiconductor device is provided, which contains a memory bank including M primary word lines and R replacement word lines, a row/column decoder, and an array of redundancy fuse elements. A sorted primary failed bit count list is generated in a descending order for the bit fail counts per word line. A sorted replacement failed bit count list is generated in an ascending order of the M primary word lines in an ascending order. The primary word lines are replaced with the replacement word lines from top to bottom on the lists until a primary failed bit count equals a replacement failed bit count or until all of the replacement word lines are used up. Optionally, the sorted primary failed bit count list may be re-sorted in an ascending or descending order of the word line address prior to the replacement process.Type: GrantFiled: June 24, 2021Date of Patent: November 8, 2022Assignee: Taiwan Semiconductor Manufacturing Company LimitedInventors: Chien-Hao Huang, Cheng-Yi Wu, Katherine H. Chiang, Chung-Te Lin
-
Publication number: 20220352333Abstract: A thin film transistor includes a gate electrode embedded in an insulating layer that overlies a substrate, a gate dielectric overlying the gate electrode, an active layer comprising a compound semiconductor material and overlying the gate dielectric, and a source electrode and drain electrode contacting end portions of the active layer. The gate dielectric may have thicker portions over interfaces with the insulating layer to suppress hydrogen diffusion therethrough. Additionally or alternatively, a passivation capping dielectric including a dielectric metal oxide material may be interposed between the active layer and a dielectric layer overlying the active layer to suppress hydrogen diffusion therethrough.Type: ApplicationFiled: November 11, 2021Publication date: November 3, 2022Inventors: Min-Kun DAI, Wei-Gang CHIU, I-Cheng CHANG, Cheng-Yi WU, Han-Ting TSAI, Tsann LIN, Chung-Te LIN
-
Publication number: 20220336671Abstract: A planar insulating spacer layer is formed over a substrate, and a vertical stack of a gate electrode, a gate dielectric layer, and a first semiconducting metal oxide layer may be formed thereabove. The first semiconducting metal oxide layer includes atoms of a first n-type dopant at a first average dopant concentration. A second semiconducting metal oxide layer is formed over the first semiconducting metal oxide layer. Portions of the second semiconducting metal oxide layer are doped with the second n-type dopant to provide a source-side n-doped region and a drain-side n-doped region that include atoms of the second n-type dopant at a second average dopant concentration that is greater than the first average dopant concentration. Various dopants may be introduced to enhance performance of the thin film transistor.Type: ApplicationFiled: June 29, 2022Publication date: October 20, 2022Inventors: Min-Kun Dai, I-Cheng Chang, Cheng-Yi Wu, Han-Ting Tsai, Tsann Lin, Chung-Te Lin, Wei-Gang Chiu
-
Patent number: 11450401Abstract: A location of at least one fail bit to be repaired in a memory block of a memory is extracted from at least one memory test on the memory block. An available repair resource in the memory for repairing the memory block is obtained. It is determined whether a Constraint Satisfaction Problem (CSP) containing a plurality of constraints is solvable. The constraints correspond to the location of the at least one fail bit in the memory block, and the available repair resource. In response to determining that the CSP is not solvable, the memory block is marked as unrepairable or the memory is rejected. In response to determining that the CSP is solvable and has a solution satisfying the constraints, the at least one fail bit is repaired using the available repair resource in accordance with the solution of the CSP.Type: GrantFiled: December 1, 2020Date of Patent: September 20, 2022Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Katherine H. Chiang, Chien-Hao Huang, Cheng-Yi Wu, Chung-Te Lin
-
Patent number: 11450399Abstract: A method of testing a non-volatile memory (NVM) array includes heating the NVM array to a target temperature. While the NVM array is heated to the target temperature, a current distribution is obtained by measuring a plurality of currents of a subset of NVM cells of the NVM array, each NVM cell of the NVM array is programmed to one of a logically high state or a logically low state, and first and second pass/fail (P/F) tests on each NVM cell of the NVM array are performed. A bit error rate is calculated based on the current distribution and the first and second P/F tests.Type: GrantFiled: February 12, 2021Date of Patent: September 20, 2022Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Chien-Hao Huang, Katherine H. Chiang, Cheng-Yi Wu, Chung-Te Lin
-
Publication number: 20220254930Abstract: A planar insulating spacer layer is formed over a substrate, and a vertical stack of a gate electrode, a gate dielectric layer, and a first semiconducting metal oxide layer may be formed thereabove. The first semiconducting metal oxide layer includes atoms of a first n-type dopant at a first average dopant concentration. A second semiconducting metal oxide layer is formed over the first semiconducting metal oxide layer. Portions of the second semiconducting metal oxide layer are doped with the second n-type dopant to provide a source-side n-doped region and a drain-side n-doped region that include atoms of the second n-type dopant at a second average dopant concentration that is greater than the first average dopant concentration. Various dopants may be introduced to enhance performance of the thin film transistor.Type: ApplicationFiled: February 11, 2021Publication date: August 11, 2022Inventors: Min-Kun DAI, I-Cheng CHANG, Cheng-Yi WU, Han-Ting TSAI, Tsann LIN, Chung-Te LIN, Wei-Gang CHIU
-
Patent number: 11404586Abstract: A planar insulating spacer layer is formed over a substrate, and a vertical stack of a gate electrode, a gate dielectric layer, and a first semiconducting metal oxide layer may be formed thereabove. The first semiconducting metal oxide layer includes atoms of a first n-type dopant at a first average dopant concentration. A second semiconducting metal oxide layer is formed over the first semiconducting metal oxide layer. Portions of the second semiconducting metal oxide layer are doped with the second n-type dopant to provide a source-side n-doped region and a drain-side n-doped region that include atoms of the second n-type dopant at a second average dopant concentration that is greater than the first average dopant concentration. Various dopants may be introduced to enhance performance of the thin film transistor.Type: GrantFiled: February 11, 2021Date of Patent: August 2, 2022Assignee: Taiwan Semiconductor Manufacturing Company LimitedInventors: Min-Kun Dai, I-Cheng Chang, Cheng-Yi Wu, Han-Ting Tsai, Tsann Lin, Chung-Te Lin, Wei-Gang Chiu
-
Publication number: 20220223528Abstract: A method for semiconductor manufacturing is disclosed. The method includes receiving a device having a first surface through which a first metal or an oxide of the first metal is exposed. The method further includes depositing a dielectric film having Si, N, C, and O over the first surface such that the dielectric film has a higher concentration of N and C in a first portion of the dielectric film near the first surface than in a second portion of the dielectric film further away from the first surface than the first portion. The method further includes forming a conductive feature over the dielectric film. The dielectric film electrically insulates the conductive feature from the first metal or the oxide of the first metal.Type: ApplicationFiled: April 4, 2022Publication date: July 14, 2022Inventors: Cheng-Yi Wu, Li-Hsuan Chu, Ching-Wen Wen, Chia-Chun Hung, Chen Liang Chang, Chin-Szu Lee, Hsiang Liu
-
Publication number: 20220223218Abstract: A semiconductor device is provided, which contains a memory bank including M primary word lines and R replacement word lines, a row/column decoder, and an array of redundancy fuse elements. A sorted primary failed bit count list is generated in a descending order for the bit fail counts per word line. A sorted replacement failed bit count list is generated in an ascending order of the M primary word lines in an ascending order. The primary word lines are replaced with the replacement word lines from top to bottom on the lists until a primary failed bit count equals a replacement failed bit count or until all of the replacement word lines are used up. Optionally, the sorted primary failed bit count list may be re-sorted in an ascending or descending order of the word line address prior to the replacement process.Type: ApplicationFiled: June 24, 2021Publication date: July 14, 2022Inventors: Chien-Hao HUANG, Cheng-Yi WU, Katherine H. CHIANG, Chung-Te LIN
-
Patent number: 11296027Abstract: A method for semiconductor manufacturing is disclosed. The method includes receiving a device having a first surface through which a first metal or an oxide of the first metal is exposed. The method further includes depositing a dielectric film having Si, N, C, and O over the first surface such that the dielectric film has a higher concentration of N and C in a first portion of the dielectric film near the first surface than in a second portion of the dielectric film further away from the first surface than the first portion. The method further includes forming a conductive feature over the dielectric film. The dielectric film electrically insulates the conductive feature from the first metal or the oxide of the first metal.Type: GrantFiled: November 12, 2019Date of Patent: April 5, 2022Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Cheng-Yi Wu, Li-Hsuan Chu, Ching-Wen Wen, Chia-Chun Hung, Chen Liang Chang, Chin-Szu Lee, Hsiang Liu
-
Publication number: 20210375380Abstract: A method of testing a non-volatile memory (NVM) array includes heating the NVM array to a target temperature. While the NVM array is heated to the target temperature, a current distribution is obtained by measuring a plurality of currents of a subset of NVM cells of the NVM array, each NVM cell of the NVM array is programmed to one of a logically high state or a logically low state, and first and second pass/fail (P/F) tests on each NVM cell of the NVM array are performed. A bit error rate is calculated based on the current distribution and the first and second P/F tests.Type: ApplicationFiled: February 12, 2021Publication date: December 2, 2021Inventors: Chien-Hao HUANG, Katherine H. CHIANG, Cheng-Yi WU, Chung-Te LIN
-
Publication number: 20210375385Abstract: A location of at least one fail bit to be repaired in a memory block of a memory is extracted from at least one memory test on the memory block. An available repair resource in the memory for repairing the memory block is obtained. It is determined whether a Constraint Satisfaction Problem (CSP) containing a plurality of constraints is solvable. The constraints correspond to the location of the at least one fail bit in the memory block, and the available repair resource. In response to determining that the CSP is not solvable, the memory block is marked as unrepairable or the memory is rejected. In response to determining that the CSP is solvable and has a solution satisfying the constraints, the at least one fail bit is repaired using the available repair resource in accordance with the solution of the CSP.Type: ApplicationFiled: December 1, 2020Publication date: December 2, 2021Inventors: Katherine H. CHIANG, Chien-Hao HUANG, Cheng-Yi WU, Chung-Te LIN
-
Patent number: 11189654Abstract: A plurality of radiation-sensing doped regions are formed in a substrate. A trench is formed in the substrate between the radiation-sensing doped regions. A SiOCN layer is filled in the trench by reacting Bis(tertiary-butylamino)silane (BTBAS) and a gas mixture comprising N2O, N2 and O2 through a plasma enhanced atomic layer deposition (PEALD) method, to form an isolation structure between the radiation-sensing doped regions.Type: GrantFiled: June 14, 2020Date of Patent: November 30, 2021Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chao-Ching Chang, Sheng-Chan Li, Chih-Hui Huang, Jian-Shin Tsai, Cheng-Yi Wu, Chia-Hsing Chou, Yi-Ming Lin, Min-Hui Lin, Chin-Szu Lee