Patents by Inventor Chengwen Pei

Chengwen Pei has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150154421
    Abstract: A set of physical unclonable function (PUF) cells is configured with a set of capacitive devices in an integrated circuit (IC). A subset of PUF cells includes a corresponding subset of capacitive devices that have failed during fabrication. A charging current sufficient to charge an operational capacitive device in a PUF cell is sent to the set of PUF cells. A determination is made whether an output voltage of a PUF cell exceeds a threshold. When the output voltage exceeding the threshold, a logic value of 1 is produced at a position in a bit-string. The determination and the producing is repeated for each PUF cell in the set to output a bit-string, which includes 1s and 0s in random positions. The bit-string is used in a security application as a random stable value owing to a random pattern of 1s and 0s present in the bit-string.
    Type: Application
    Filed: December 4, 2013
    Publication date: June 4, 2015
    Applicant: International Business Machines Corporation
    Inventors: Kai Di Feng, Wai-Kin Li, Chengwen Pei, Ping-Chuan Wang
  • Patent number: 9048339
    Abstract: A method of forming a deep trench capacitor in a semiconductor-on-insulator substrate is provided. The method may include providing a pad layer positioned above a bulk substrate, etching a deep trench into the pad layer and the bulk substrate extending from a top surface of the pad layer down to a location within the bulk substrate, and doping a portion of the bulk substrate to form a buried plate. The method further including depositing a node dielectric, an inner electrode, and a dielectric cap substantially filling the deep trench, the node dielectric being located between the buried plate and the inner electrode, the dielectric cap being located at a top of the deep trench, removing the pad layer, growing an insulator layer on top of the bulk substrate, and growing a semiconductor-on-insulator layer on top of the insulator layer.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: June 2, 2015
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Joseph Ervin, Chengwen Pei, Ravi M. Todi, Geng Wang
  • Publication number: 20150137269
    Abstract: In a replacement gate scheme, a continuous material layer is deposited on a bottom surface and a sidewall surface in a gate cavity. A vertical portion of the continuous material layer is removed to form a gate component of which a vertical portion does not extend to a top of the gate cavity. The gate component can be employed as a gate dielectric or a work function metal portion to form a gate structure that enhances performance of a replacement gate field effect transistor.
    Type: Application
    Filed: December 16, 2014
    Publication date: May 21, 2015
    Inventors: Zhengwen Li, Dechao Guo, Randolph F. Knarr, Chengwen Pei, Gan Wang, Yanfeng Wang, Keith Kwong Hon Wong, Jian Yu, Jun Yuan
  • Patent number: 9029862
    Abstract: A trench is formed in a semiconductor substrate, and is filled with a node dielectric layer and at least one conductive material fill portion that functions as an inner electrode. The at least one conductive material fill portion includes a doped polycrystalline semiconductor fill portion. A gate stack for an access transistor is formed on the semiconductor substrate, and a gate spacer is formed around the gate stack. A source/drain trench is formed between an outer sidewall of the gate spacer and a sidewall of the doped polycrystalline semiconductor fill portion. An epitaxial source region and a polycrystalline semiconductor material portion are simultaneously formed by a selective epitaxy process such that the epitaxial source region and the polycrystalline semiconductor material portion contact each other without a gap therebetween. The polycrystalline semiconductor material portion provides a robust low resistance conductive path between the source region and the inner electrode.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: May 12, 2015
    Assignee: International Business Machines Corporation
    Inventors: Karen A. Nummy, Chengwen Pei, Werner A. Rausch, Geng Wang
  • Patent number: 9024411
    Abstract: A three-dimensionally (3d) confined conductor advantageously used as an electronic fuse and self-aligned methods of forming the same. By non-conformal deposition of a dielectric film over raised structures, a 3d confined tube, which may be sub-lithographic, is formed between the raised structures. Etching holes which intersect the 3d confined region and subsequent metal deposition fills the 3d confined region and forms contacts. When the raised structures are gates, the fuse element may be located at the middle of the line (i.e. in pre-metal dielectric). Other methods for creating the structure are also described.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: May 5, 2015
    Assignee: International Business Machines Corporation
    Inventors: Junjun Li, Yan Zun Li, Chengwen Pei, Pinping Sun
  • Publication number: 20150115365
    Abstract: Arbitrarily and continuously scalable on-currents can be provided for fin field effect transistors by providing two independent variables for physical dimensions for semiconductor fins that are employed for the fin field effect transistors. A recessed region is formed on a semiconductor layer over a buried insulator layer. A dielectric cap layer is formed over the semiconductor layer. Disposable mandrel structures are formed over the dielectric cap layer and spacer structures are formed around the disposable mandrel structures. Selected spacer structures can be structurally damaged during a masked ion implantation. An etch is employed to remove structurally damaged spacer structures at a greater etch rate than undamaged spacer structures. After removal of the disposable mandrel structures, the semiconductor layer is patterned into a plurality of semiconductor fins having different heights and/or different width. Fin field effect transistors having different widths and/or heights can be subsequently formed.
    Type: Application
    Filed: January 5, 2015
    Publication date: April 30, 2015
    Inventors: Dechao Guo, Yang Liu, Chengwen Pei, Yue Tan
  • Publication number: 20150108571
    Abstract: A method for forming a semiconductor device includes forming gate stacks on a crystalline semiconductor layer; depositing a spacer layer over a top and sidewalls of the gate stacks; recessing the semiconductor layer between the gates stacks; and depositing a non-conformal layer over the gates stacks and within the recesses such that the non-conformal layer forms a pinch point over the recesses. The non-conformal layer is etched at a bottom of the recesses through the pinch point to expose the semiconductor layer. Dopant species are implanted at the bottom of the recesses through the pinch point in the semiconductor layer. The non-conformal layer is stripped, and source and drain material is grown in the recesses. The dopant species are activated to form PN junctions to act as a junction butt between portions of the semiconductor layer.
    Type: Application
    Filed: October 18, 2013
    Publication date: April 23, 2015
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Edward P. Maciejewski, Chengwen Pei, Gan Wang, Geng Wang
  • Patent number: 9006801
    Abstract: A method of forming a semiconductor device is provided that includes forming a first metal semiconductor alloy on a semiconductor containing surface, forming a dielectric layer over the first metal semiconductor alloy, forming an opening in the dielectric layer to provide an exposed surface the first metal semiconductor alloy, and forming a second metal semiconductor alloy on the exposed surface of the first metal semiconductor alloy. In another embodiment, the method includes forming a gate structure on a channel region of a semiconductor substrate, forming a dielectric layer over at least a source region and a drain region, forming an opening in the dielectric layer to provide an exposed surface the semiconductor substrate, forming a first metal semiconductor alloy on the exposed surface of the semiconductor substrate, and forming a second metal semiconductor alloy on the first metal semiconductor alloy.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: April 14, 2015
    Assignee: International Business Machines Corporation
    Inventors: Christian Lavoie, Zhengwen Li, Ahmet S. Ozcan, Filippos Papadatos, Chengwen Pei, Jian Yu
  • Patent number: 9006783
    Abstract: Device structures and design structures that include a silicon controlled rectifier, as well as fabrication methods for such device structures. A well is formed in the device layer of a silicon-on-insulator substrate. A silicon controlled rectifier is formed that includes an anode in the well. A deep trench capacitor is formed that includes a plate coupled with the well. The plate of the deep trench capacitor extends from the device layer through a buried insulator layer of the silicon-on-insulator substrate and into a handle wafer of the silicon-on-insulator substrate.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: April 14, 2015
    Assignee: International Business Machines Corporation
    Inventors: James P. Di Sarro, Robert J. Gauthier, Jr., Tom C. Lee, Junjun Li, Souvick Mitra, Chengwen Pei, Christopher S. Putnam, Theodorus E. Standaert
  • Publication number: 20150097266
    Abstract: An electronic fuse link with lower programming current for high performance and self-aligned methods of forming the same. The invention provides a horizontal e-fuse structure in the middle of the line. A reduced fuse link width is achieved by spacers on sides of pair of dummy or active gates, to create sub-lithographic dimension between gates with spacers to confine a fuse link. A reduced height in the third dimension on the fuse link achieved by etching the link, thereby creating a fuse link having a sub-lithographic size in all dimensions. The fuse link is formed over an isolation region to enhanced heating and aid fuse blow.
    Type: Application
    Filed: October 7, 2013
    Publication date: April 9, 2015
    Applicant: International Business Machines Corporation
    Inventors: Junjun Li, Yan Zun Li, Chengwen Pei, Pinping Sun
  • Publication number: 20150084733
    Abstract: A reconfigurable multi-stack inductor formed within a semiconductor structure may include a first inductor structure located within a first metal layer of the semiconductor structure, a first ground shielding structure located within the first metal layer that is electrically isolated from and circumferentially bounds the first inductor structure, and a second inductor structure located within a second metal layer of the semiconductor structure, whereby the second inductor structure is electrically coupled to the first inductor structure.
    Type: Application
    Filed: September 26, 2013
    Publication date: March 26, 2015
    Applicant: International Business Machines Corporation
    Inventors: Pinping Sun, Chengwen Pei, Zheng Xu
  • Patent number: 8987078
    Abstract: A method of forming a semiconductor device is provided that includes forming a gate structure on a channel portion of a semiconductor substrate, forming an interlevel dielectric layer over the gate structure, and forming a opening through the interlevel dielectric layer to an exposed surface of the semiconductor substrate containing at least one of the source region and the drain region. A metal semiconductor alloy contact is formed on the exposed surface of the semiconductor substrate. At least one dielectric sidewall spacer is formed on sidewalls of the opening. An interconnect is formed within the opening in direct contact with the metal semiconductor alloy contact.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: March 24, 2015
    Assignees: International Business Machines Corporation, GLOBAL FOUNDRIES, Inc.
    Inventors: Jian Yu, Jeffrey B. Johnson, Zhengwen Li, Chengwen Pei, Michael Hargrove
  • Patent number: 8981523
    Abstract: Methods of forming an electrically programmable fuse (e-fuse) structure and the e-fuse structure are disclosed. Various embodiments of forming the e-fuse structure include: forming a dummy poly gate structure to contact a surface of a silicon structure, the dummy poly gate structure extending only a part of a length of the silicon structure; and converting an unobstructed portion of the surface of the silicon structure to silicide to form a thinned strip of the silicide between two end regions.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: March 17, 2015
    Assignee: International Business Machines Corporation
    Inventors: Yan Zun Li, Zhengwen Li, Chengwen Pei, Jian Yu
  • Patent number: 8969933
    Abstract: In a replacement gate scheme, a continuous material layer is deposited on a bottom surface and a sidewall surface in a gate cavity. A vertical portion of the continuous material layer is removed to form a gate component of which a vertical portion does not extend to a top of the gate cavity. The gate component can be employed as a gate dielectric or a work function metal portion to form a gate structure that enhances performance of a replacement gate field effect transistor.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: March 3, 2015
    Assignee: International Business Machines Corporation
    Inventors: Zhengwen Li, Dechao Guo, Randolph F. Knarr, Chengwen Pei, Gan Wang, Yanfeng Wang, Keith Kwong Hon Wong, Jian Yu, Jun Yuan
  • Publication number: 20150056760
    Abstract: A semiconductor-on-insulator (SOI) substrate comprises a bulk semiconductor substrate, a buried insulator layer formed on the bulk substrate and an active semiconductor layer formed on the buried insulator layer. Impurities are implanted near the interface of the buried insulator layer and the active semiconductor layer. A diffusion barrier layer is formed between the impurities and an upper surface of the active semiconductor layer. The diffusion barrier layer prevents the impurities from diffusing therethrough.
    Type: Application
    Filed: October 21, 2014
    Publication date: February 26, 2015
    Inventors: Gregory G. Freeman, Kam Leung Lee, Chengwen Pei, Geng Wang, Yanli Zhang
  • Publication number: 20150054130
    Abstract: An improved semiconductor capacitor and method of fabrication is disclosed. A MIM stack, comprising alternating first-type and second-type metal layers (each separated by dielectric) is formed in a deep cavity. The entire stack can be planarized, and then patterned to expose a first area, and selectively etched to recess all first metal layers within the first area. A second selective etch is performed to recess all second metal layers within a second area. The etched recesses can be backfilled with dielectric. Separate electrodes can be formed; a first electrode formed in said first area and contacting all of said second-type metal layers and none of said first-type metal layers, and a second electrode formed in said second area and contacting all of said first-type metal layers and none of said second-type metal layers.
    Type: Application
    Filed: November 4, 2014
    Publication date: February 26, 2015
    Inventors: Kangguo Cheng, Joseph Ervin, Chengwen Pei, Ravi M. Todi, Geng Wang
  • Patent number: 8962423
    Abstract: An improved semiconductor capacitor and method of fabrication is disclosed. A MIM stack, comprising alternating first-type and second-type metal layers (each separated by dielectric) is formed in a deep cavity. The entire stack can be planarized, and then patterned to expose a first area, and selectively etched to recess all first metal layers within the first area. A second selective etch is performed to recess all second metal layers within a second area. The etched recesses can be backfilled with dielectric. Separate electrodes can be formed; a first electrode formed in said first area and contacting all of said second-type metal layers and none of said first-type metal layers, and a second electrode formed in said second area and contacting all of said first-type metal layers and none of said second-type metal layers.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: February 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Joseph Ervin, Chengwen Pei, Ravi M. Todi, Geng Wang
  • Publication number: 20150044845
    Abstract: A semiconductor device is provided that includes a gate structure on a channel region of a substrate. A source region and a drain region are present on opposing sides of the channel region. A first metal semiconductor alloy is present on an upper surface of at least one of the source and drain regions. The first metal semiconductor alloy extends to a sidewall of the gate structure. A dielectric layer is present over the gate structure and the first metal semiconductor alloy. An opening is present through the dielectric layer to a portion of the first metal semiconductor alloy that is separated from the gate structure. A second metal semiconductor alloy is present in the opening, is in direct contact with the first metal semiconductor alloy, and has an upper surface that is vertically offset and is located above the upper surface of the first metal semiconductor alloy.
    Type: Application
    Filed: October 27, 2014
    Publication date: February 12, 2015
    Inventors: Christian Lavoie, Zhengwen Li, Ahmet S. Ozcan, Filippos Papadatos, Chengwen Pei, Jian Yu
  • Publication number: 20150041950
    Abstract: A three-dimensionally (3d) confined conductor advantageously used as an electronic fuse and self-aligned methods of forming the same. By non-conformal deposition of a dielectric film over raised structures, a 3d confined tube, which may be sub-lithographic, is formed between the raised structures. Etching holes which intersect the 3d confined region and subsequent metal deposition fills the 3d confined region and forms contacts. When the raised structures are gates, the fuse element may be located at the middle of the line (i.e. in pre-metal dielectric). Other methods for creating the structure are also described.
    Type: Application
    Filed: August 12, 2013
    Publication date: February 12, 2015
    Applicant: International Business Machines Corporation
    Inventors: Junjun Li, Yan Zun Li, Chengwen Pei, Pinping Sun
  • Publication number: 20150037939
    Abstract: A dielectric template layer is deposited on a substrate. Line trenches are formed within the dielectric template layer by an anisotropic etch that employs a patterned mask layer. The patterned mask layer can be a patterned photoresist layer, or a patterned hard mask layer that is formed by other image transfer methods. A lower portion of each line trench is filled with an epitaxial rare-earth oxide material by a selective rare-earth oxide epitaxy process. An upper portion of each line trench is filled with an epitaxial semiconductor material by a selective semiconductor epitaxy process. The dielectric template layer is recessed to form a dielectric material layer that provides lateral electrical isolation among fin structures, each of which includes a stack of a rare-earth oxide fin portion and a semiconductor fin portion.
    Type: Application
    Filed: July 21, 2014
    Publication date: February 5, 2015
    Inventors: Kangguo Cheng, Joseph Ervin, Chengwen Pei, Ravi M. Todi, Geng Wang