Patents by Inventor Chern-Yow Hsu

Chern-Yow Hsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180062074
    Abstract: A memory structure includes a first dielectric layer, having a first top surface, over a conductive structure. A first opening in the first dielectric layer exposes an area of the conductive structure, and has an interior sidewall. A first electrode structure, having a first portion and a second portion, is over the exposed area of the conductive structure. The second portion extends upwardly along the interior sidewall. A resistance variable layer is disposed over the first electrode. A second electrode structure, having a third portion and a fourth portion, is over the resistance variable layer. The third portion has a second top surface below the first top surface of the first dielectric layer. The fourth portion extends upwardly along the resistance variable layer. A second opening is defined by the second electrode structure. At least a part of a second dielectric layer is disposed in the second opening.
    Type: Application
    Filed: November 6, 2017
    Publication date: March 1, 2018
    Inventors: Fu-Ting Sung, Ching-Pei Hsieh, Chia-Shiung Tsai, Chern-Yow Hsu, Shih-Chang Liu
  • Publication number: 20180047895
    Abstract: A storage device includes a first electrode, a stacked feature, a spacer and a barrier structure. The stacked feature is position over the first electrode, and includes a storage element and a second electrode over the storage element. The spacer is positioned on a sidewall of the stacked feature, the spacer having a notch positioned on a top surface of the spacer, in which the notch of the spacer has a surface which is continuous with a top surface of the stacked feature. The barrier structure is embedded in a lateral of the spacer. The barrier structure has a top extending upwards past a bottom of the notch.
    Type: Application
    Filed: October 13, 2017
    Publication date: February 15, 2018
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Fu-Ting SUNG, Chern-Yow HSU, Shih-Chang LIU
  • Publication number: 20180006085
    Abstract: A method for fabricating a semiconductor memory device is provided. The method includes: etching a first region of the semiconductor memory device to expose a first capping layer; forming a second capping layer on the first capping layer; etching a portion of the first capping layer and a portion of the second capping layer to form a first trench reaching a first metal line; and forming a second metal line in the first trench to contact the first metal line.
    Type: Application
    Filed: July 1, 2016
    Publication date: January 4, 2018
    Inventors: HARRY-HAK-LAY CHUANG, SHENG-HAUNG HAUNG, SHIH-CHANG LIU, CHERN-YOW HSU
  • Patent number: 9847473
    Abstract: The present disclosure relates to a magneto-resistive random access memory (MRAM) cell having an extended upper electrode, and a method of formation. In some embodiments, the MRAM cell has a magnetic tunnel junction (MTJ) arranged over a conductive lower electrode. A conductive upper electrode is arranged over the magnetic tunnel junction. The conductive upper electrode has a lower portion and an upper portion. The lower portion overlies the magnetic tunnel junction and is laterally surrounded by an encapsulation structure. The upper portion is arranged onto the lower portion and the encapsulation structure, and laterally extends past the lower portion of the conductive upper electrode. By laterally extending past the lower portion, the upper portion of the conductive upper electrode gives a via a larger landing area than the lower portion of the upper electrode would provide, thereby mitigating via punch through resulting from overlay errors.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: December 19, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chern-Yow Hsu, Shih-Chang Liu
  • Patent number: 9837605
    Abstract: A manufacture includes a first electrode having an upper surface and a side surface, a resistance variable film over the first electrode, and a second electrode over the resistance variable film. The resistance variable film extends along the upper surface and the side surface of the first electrode. The second electrode has a side surface. A portion of the side surface of the first electrode and a portion of the side surface of the second electrode sandwich a portion of the resistance variable film.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: December 5, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ching-Pei Hsieh, Fu-Ting Sung, Chern-Yow Hsu, Shih-Chang Liu, Chia-Shiung Tsai
  • Patent number: 9837606
    Abstract: A memory structure includes a first dielectric layer, having a first top surface, over a conductive structure. A first opening in the first dielectric layer exposes an area of the conductive structure, and has an interior sidewall. A first electrode structure, having a first portion and a second portion, is over the exposed area of the conductive structure. The second portion extends upwardly along the interior sidewall. A resistance variable layer is disposed over the first electrode. A second electrode structure, having a third portion and a fourth portion, is over the resistance variable layer. The third portion has a second top surface below the first top surface of the first dielectric layer. The fourth portion extends upwardly along the resistance variable layer. A second opening is defined by the second electrode structure. At least a part of a second dielectric layer is disposed in the second opening.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: December 5, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Fu-Ting Sung, Ching-Pei Hsieh, Chia-Shiung Tsai, Chern-Yow Hsu, Shih-Chang Liu
  • Patent number: 9837421
    Abstract: A semiconductor arrangement includes an active region including a semiconductor device. The semiconductor arrangement includes a capacitor having a first electrode layer, a second electrode layer, and an insulating layer between the first electrode layer and the second electrode layer. At least three dielectric layers are between a bottom surface of the capacitor and the active region.
    Type: Grant
    Filed: October 10, 2016
    Date of Patent: December 5, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Chern-Yow Hsu, Cheng-Jong Wang, Chia-Shiung Tsai, Shih-Chang Liu, Xiaomeng Chen
  • Patent number: 9825040
    Abstract: A semiconductor arrangement includes an active region including a semiconductor device. The semiconductor arrangement includes a capacitor. The capacitor includes a first electrode over at least one dielectric layer over the active region. The first electrode surrounds an open space within the capacitor. The first electrode has a non-linear first electrode sidewall.
    Type: Grant
    Filed: December 31, 2013
    Date of Patent: November 21, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Chern-Yow Hsu, Ming Chyi Liu, Shih-Chang Liu, Chia-Shiung Tsai, Xiaomeng Chen, Chen-Jong Wang
  • Patent number: 9818935
    Abstract: Some embodiments relate to an integrated circuit including a magnetoresistive random-access memory (MRAM) cell. The integrated circuit includes a semiconductor substrate and an interconnect structure disposed over the semiconductor substrate. The interconnect structure includes a plurality of dielectric layers and a plurality of metal layers that are stacked over one another in alternating fashion. The plurality of metal layers include a lower metal layer and an upper metal layer disposed over the lower metal layer. A bottom electrode is disposed over and in electrical contact with the lower metal layer. A magnetic tunneling junction (MTJ) is disposed over an upper surface of bottom electrode. A top electrode is disposed over an upper surface of the MTJ and is in direct electrical contact with a lower surface of the upper metal layer.
    Type: Grant
    Filed: January 19, 2016
    Date of Patent: November 14, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Harry-Hak-Lay Chuang, Chern-Yow Hsu, Shih-Chang Liu
  • Patent number: 9806254
    Abstract: A storage device includes a first electrode, a second electrode, a storage element, a spacer and a barrier structure. The second electrode is opposite to the first electrode. The storage element is disposed between the first electrode and the second electrode. The spacer is formed on a sidewall of the second electrode, and the spacer has a notch positioned on a top surface of the spacer. The barrier structure is embedded in a lateral of the spacer, and the barrier structure has a top extending upwards past a bottom of the notch. In addition, a method of manufacturing the storage device is disclosed as well.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: October 31, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Fu-Ting Sung, Chern-Yow Hsu, Shih-Chang Liu
  • Patent number: 9793339
    Abstract: The present disclosure relates to a MIM capacitor that includes a composite capacitor top metal (CTM) electrode and a composite capacitor bottom metal (CBM) electrode. The composite CBM electrode includes a first diffusion barrier layer overlying a first metal layer, and the composite CTM electrode includes a second diffusion barrier layer overlying a second metal layer. A dielectric layer is arranged over the composite CBM electrode, underlying the composite CTM electrode. The first and second diffusion barrier layers protect the first and second metal layers from metal that diffuses or moves from a metal line underlying the MIM capacitor to the composite CTM and CBM electrodes during manufacture. A method of manufacturing the MIM capacitor is also provided.
    Type: Grant
    Filed: January 8, 2015
    Date of Patent: October 17, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ching-Sheng Chu, Chern-Yow Hsu, Shih-Chang Liu
  • Publication number: 20170256606
    Abstract: A method of fabricating a metal-insulator-metal (MIM) capacitor structure on a substrate includes forming a patterned metal layer over the substrate; forming an insulator layer over the patterned metal layer; forming a second metal layer over the insulator layer; removing part of the insulating layer and part of the second metal layer thereby forming a substantially coplanar surface that is formed by the patterned metal layer, the insulator layer, and the second metal layer; removing a portion of the second metal layer and a portion of the patterned metal layer to form a fin from the insulator layer that protrudes beyond the first metal layer and the second metal layer; and forming an inter-metal dielectric layer over the fin.
    Type: Application
    Filed: May 24, 2017
    Publication date: September 7, 2017
    Inventors: Chern-Yow Hsu, Shih-Chang Liu
  • Publication number: 20170222128
    Abstract: The present disclosure provides a semiconductor structure, including an Nth metal layer, a bottom electrode over the Nth metal layer, a magnetic tunneling junction (MTJ) over the bottom electrode, a top electrode over the MTJ, and an (N+M)th metal layer over the Nth metal layer. N and M are positive integers. The (N+M)th metal layer surrounds a portion of a sidewall of the top electrode. A manufacturing method of forming the semiconductor structure is also provided.
    Type: Application
    Filed: May 10, 2016
    Publication date: August 3, 2017
    Inventors: FU-TING SUNG, CHUNG-CHIANG MIN, YUAN-TAI TSENG, CHERN-YOW HSU, SHIH-CHANG LIU
  • Publication number: 20170194557
    Abstract: The present disclosure provides a semiconductor structure, including an Nth metal layer over a transistor region, where N is a natural number, and a bottom electrode over the Nth metal layer. The bottom electrode comprises a bottom portion having a first width, disposed in a bottom electrode via (BEVA), the first width being measured at a top surface of the BEVA, and an upper portion having a second width, disposed over the bottom portion. The semiconductor structure also includes a magnetic tunneling junction (MTJ) layer having a third width, disposed over the upper portion, a top electrode over the MTJ layer and an (N+1)th metal layer over the top electrode. The first width is greater than the third width.
    Type: Application
    Filed: May 19, 2016
    Publication date: July 6, 2017
    Inventors: HARRY-HAK-LAY CHUANG, SHIH-CHANG LIU, CHERN-YOW HSU, KUEI-HUNG SHEN
  • Publication number: 20170194559
    Abstract: An integrated circuit device includes a substrate and a magnetic tunneling junction (MTJ). The MTJ includes at least a pinned layer, a barrier layer, and a free layer. The MTJ is formed over a surface of the substrate. Of the pinned layer, the barrier layer, and the free layer, the free layer is formed first and is closest to the surface. This enables a spacer to be formed over a perimeter region of the free layer prior to etching the free layer. Any damage to the free layer that results from etching or other free layer edge-defining process is kept at a distance from the tunneling junction by the spacer.
    Type: Application
    Filed: March 20, 2017
    Publication date: July 6, 2017
    Inventors: Wei-Hang Huang, Fu-Ting Sung, Chern-Yow Hsu, Shih-Chang Liu, Chia-Shiung Tsai
  • Publication number: 20170186946
    Abstract: A magnetoresistive random access memory (MRAM) structure includes a bottom electrode structure. A magnetic tunnel junction (MTJ) element is over the bottom electrode structure. The MTJ element includes an anti-ferromagnetic material layer. A ferromagnetic pinned layer is over the anti-ferromagnetic material layer. A tunneling layer is over the ferromagnetic pinned layer. A ferromagnetic free layer is over the tunneling layer. The ferromagnetic free layer has a first portion and a demagnetized second portion. The MRAM also includes a top electrode structure over the first portion.
    Type: Application
    Filed: March 10, 2017
    Publication date: June 29, 2017
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chern-Yow Hsu, Wei-Hang Huang, Shih-Chang Liu, Chia-Shiung Tsai
  • Patent number: 9666661
    Abstract: A method of fabricating a metal-insulator-metal (MIM) capacitor structure on a substrate includes forming a patterned metal layer over the substrate; forming an insulator layer over the patterned metal layer; forming a second metal layer over the insulator layer; removing part of the insulating layer and part of the second metal layer thereby forming a substantially coplanar surface that is formed by the patterned metal layer, the insulator layer, and the second metal layer; removing a portion of the second metal layer and a portion of the patterned metal layer to form a fin from the insulator layer that protrudes beyond the first metal layer and the second metal layer; and forming an inter-metal dielectric layer over the fin.
    Type: Grant
    Filed: September 8, 2015
    Date of Patent: May 30, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chern-Yow Hsu, Shih-Chang Liu
  • Patent number: 9660188
    Abstract: A phase change memory (PCM) cell with a heating element electrically isolated from laterally surrounding regions of the PCM cell by a cavity is provided. A dielectric region is arranged between first and second conductors. A heating plug is arranged within a hole extending through the dielectric region to the first conductor. The heating plug includes a heating element running along sidewalls of the hole, and includes a sidewall structure including a cavity arranged between the heating element and the sidewalls. A phase change element is in thermal communication with the heating plug and arranged between the heating plug and the second conductor. Also provide is a method for manufacturing the PCM cell.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: May 23, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Po-ken Lin, Chang-Ming Wu, Chern-Yow Hsu, Shih-Chang Liu
  • Publication number: 20170133384
    Abstract: A semiconductor arrangement includes a logic region and a memory region. The memory region has an active region that includes a semiconductor device. The memory region also has a capacitor within one or more dielectric layers over the active region. The semiconductor arrangement includes a protective ring within at least one of the logic region or the memory region and that separates the logic region from the memory region. The capacitor has a first electrode, a second electrode and an insulating layer between the first electrode and the second electrode, where an electrode unit of the first electrode has a first portion and a second portion, and where the second portion is above the first portion and is wider than the first portion.
    Type: Application
    Filed: January 23, 2017
    Publication date: May 11, 2017
    Inventors: Chern-Yow Hsu, Chen Jong Wang, Chia-Shiung Tsai, Shih-Chang Liu, Xiaomeng Chen
  • Patent number: 9620582
    Abstract: The present disclosure relates a metal-insulator-metal (MIM) capacitor. In some embodiments, the MIM capacitor has a capacitor bottom metal (CBM) electrode arranged over a semiconductor substrate. The MIM capacitor has a high-k dielectric disposed over the CBM electrode and a capacitor top metal (CTM) electrode arranged over the high-k dielectric layer. The MIM capacitor has a dummy structure that is disposed vertically over the high-k dielectric layer and laterally apart from the CTM electrode. The dummy structure includes a conductive body having a same material as the CTM electrode.
    Type: Grant
    Filed: January 27, 2015
    Date of Patent: April 11, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ching-Pei Hsieh, Chern-Yow Hsu, Shih-Chang Liu