Patents by Inventor Chi Tu

Chi Tu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11800720
    Abstract: The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip includes a bottom electrode disposed over a substrate. A data storage structure is disposed on the bottom electrode and is configured to store a data state. A top electrode is disposed on the data storage structure. The top electrode has interior surfaces defining a recess within an upper surface of the top electrode. A masking layer contacts a bottom of the recess and extends to over the upper surface of the top electrode. An interconnect extends through the masking layer and to the top electrode. The interconnect is directly over the upper surface of the top electrode.
    Type: Grant
    Filed: November 17, 2021
    Date of Patent: October 24, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tzu-Yu Chen, Kuo-Chi Tu, Sheng-Hung Shih, Wen-Ting Chu, Chih-Hsiang Chang, Fu-Chen Chang
  • Publication number: 20230337440
    Abstract: Some embodiments relate to a ferroelectric random access memory (FeRAM) device. The FeRAM device includes a bottom electrode structure and a top electrode overlying the ferroelectric structure. The top electrode has a first width as measured between outermost sidewalls of the top electrode. A ferroelectric structure separates the bottom electrode structure from the top electrode. The ferroelectric structure has a second width as measured between outermost sidewalls of the ferroelectric structure. The second width is greater than the first width such that the ferroelectric structure includes a ledge that reflects a difference between the first width and the second width. A dielectric sidewall spacer structure is disposed on the ledge and covers the outermost sidewalls of the top electrode.
    Type: Application
    Filed: June 16, 2023
    Publication date: October 19, 2023
    Inventors: Tzu-Yu Chen, Kuo-Chi Tu, Sheng-Hung Shih, Fu-Chen Chang
  • Publication number: 20230329001
    Abstract: The present disclosure relates to a ferroelectric memory device that includes a bottom electrode, a ferroelectric structure overlying the bottom electrode, and a top electrode overlying the ferroelectric structure where the bottom electrode includes molybdenum.
    Type: Application
    Filed: March 28, 2022
    Publication date: October 12, 2023
    Inventors: Harry-Hak-Lay Chuang, Fu-Chen Chang, Tzu-Yu Chen, Sheng-Hung Shih, Kuo-Chi Tu
  • Patent number: 11785777
    Abstract: In some embodiments, the present disclosure relates to a method of forming an integrated chip including forming a ferroelectric layer over a bottom electrode layer, forming a top electrode layer over the ferroelectric layer, performing a first removal process to remove peripheral portions of the bottom electrode layer, the ferroelectric layer, and the top electrode layer, and performing a second removal process using a second etch that is selective to the bottom electrode layer and the top electrode layer to remove portions of the bottom electrode layer and the top electrode layer, so that after the second removal process the ferroelectric layer has a surface that protrudes past a surface of the bottom electrode layer and the top electrode layer.
    Type: Grant
    Filed: January 12, 2022
    Date of Patent: October 10, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hsiang Chang, Kuo-Chi Tu, Sheng-Hung Shih, Wen-Ting Chu, Tzu-Yu Chen, Fu-Chen Chang
  • Publication number: 20230309318
    Abstract: A semiconductor device includes a bottom electrode, a top electrode, a sidewall spacer, and a data storage element. The sidewall spacer is disposed aside the top electrode. The data storage element is located between the bottom electrode and the top electrode, and includes a ferroelectric material. The data storage element has a peripheral region which is disposed beneath the sidewall spacer and which has at least 60% of ferroelectric phase. A method for manufacturing the semiconductor device and a method for transforming a non-ferroelectric phase of a ferroelectric material to a ferroelectric phase are also disclosed.
    Type: Application
    Filed: May 26, 2023
    Publication date: September 28, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tzu-Yu CHEN, Sheng-Hung SHIH, Fu-Chen CHANG, Kuo-Chi TU, Wen-Ting CHU
  • Patent number: 11751401
    Abstract: A semiconductor device includes a semiconductor substrate, a memory gate, and a data storage element. The semiconductor substrate includes a memory well which has two source/drain regions and a channel region between the source/drain regions. The memory gate is disposed above the channel region. The data storage element includes a ferroelectric material, and is disposed around the memory gate to separate the memory gate from the channel region.
    Type: Grant
    Filed: May 27, 2021
    Date of Patent: September 5, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tzu-Yu Chen, Sheng-Hung Shih, Kuo-Chi Tu
  • Patent number: 11751406
    Abstract: An RRAM cell stack is formed over an opening in a dielectric layer. The dielectric layer is sufficiently thick and the opening is sufficiently deep that an RRAM cell can be formed by a planarization process. The resulting RRAM cells may have a U-shaped profile. The RRAM cell area includes contributions from a bottom portion in which the RRAM cell layers are stacked parallel to the substrate and a side portion in which RRAM cell layers are stacked roughly perpendicular to the substrate. The combined side and bottom portions of the curved RRAM cell provide an increased area in comparison to a planar cell stack. The increased area lowers forming and set voltages for the RRAM cell.
    Type: Grant
    Filed: August 3, 2021
    Date of Patent: September 5, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Te-Hsien Hsieh, Tzu-Yu Chen, Kuo-Chi Tu, Yuan-Tai Tseng
  • Publication number: 20230274780
    Abstract: Methods for programming memory cells of a resistive memory device include applying a voltage pulse sequence to a memory cell to set a logic state of the memory cell. An initial set sequence of voltage pulses may be applied to the memory cell, followed by a reform voltage pulse having an amplitude greater than the amplitudes of the initial set sequence, and within ±5% of the amplitude of a voltage pulse used in an initial forming process. Additional voltage pulses having amplitudes that are less than the amplitude of the reform voltage pulse may be subsequently applied. By applying a reform voltage pulse in the middle of, or at the end of, a memory set sequence including multiple voltage pulses, a resistive memory device may have a larger memory window and improved data retention relative to resistive memory devices programmed using conventional programming methods.
    Type: Application
    Filed: May 5, 2023
    Publication date: August 31, 2023
    Inventors: Fu-Chen Chang, Chu-Jie Huang, Nai-Chao Su, Kuo-Chi Tu, Wen-Ting Chu
  • Publication number: 20230262991
    Abstract: The present disclosure relates to an integrated chip including a first ferroelectric layer over a substrate. A first electrode layer is over the substrate and on a first side of the first ferroelectric layer. A second electrode layer is over the substrate and on a second side of the first ferroelectric layer, opposite the first side. A first barrier layer is between the first ferroelectric layer and the first electrode layer. A bandgap energy of the first barrier layer is greater than a bandgap energy of the first ferroelectric layer.
    Type: Application
    Filed: February 15, 2022
    Publication date: August 17, 2023
    Inventors: Fu-Chen Chang, Tzu-Yu Chen, Sheng-Hung Shih, Kuo-Chi Tu, Wen-Ting Chu
  • Patent number: 11723292
    Abstract: The present disclosure, in some embodiments, relates to a memory device. The memory device includes a dielectric protection layer having sidewalls defining an opening over a conductive interconnect within an inter-level dielectric (ILD) layer. A bottom electrode structure extends from within the opening to directly over the dielectric protection layer. A variable resistance layer is over the bottom electrode structure and a top electrode is over the variable resistance layer. A top electrode via is disposed on the top electrode and directly over the dielectric protection layer.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: August 8, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Yang Chang, Wen-Ting Chu, Kuo-Chi Tu, Yu-Wen Liao, Hsia-Wei Chen, Chin-Chieh Yang, Sheng-Hung Shih, Wen-Chun You
  • Patent number: 11723213
    Abstract: Some embodiments relate to a ferroelectric random access memory (FeRAM) device. The FeRAM device includes a bottom electrode structure and a top electrode overlying the ferroelectric structure. The top electrode has a first width as measured between outermost sidewalls of the top electrode. A ferroelectric structure separates the bottom electrode structure from the top electrode. The ferroelectric structure has a second width as measured between outermost sidewalls of the ferroelectric structure. The second width is greater than the first width such that the ferroelectric structure includes a ledge that reflects a difference between the first width and the second width. A dielectric sidewall spacer structure is disposed on the ledge and covers the outermost sidewalls of the top electrode.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: August 8, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tzu-Yu Chen, Kuo-Chi Tu, Sheng-Hung Shih, Fu-Chen Chang
  • Patent number: 11706930
    Abstract: A semiconductor device includes a bottom electrode, a top electrode, a sidewall spacer, and a data storage element. The sidewall spacer is disposed aside the top electrode. The data storage element is located between the bottom electrode and the top electrode, and includes a ferroelectric material. The data storage element has a peripheral region which is disposed beneath the sidewall spacer and which has at least 60% of ferroelectric phase. A method for manufacturing the semiconductor device and a method for transforming a non-ferroelectric phase of a ferroelectric material to a ferroelectric phase are also disclosed.
    Type: Grant
    Filed: May 27, 2021
    Date of Patent: July 18, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tzu-Yu Chen, Sheng-Hung Shih, Fu-Chen Chang, Kuo-Chi Tu, Wen-Ting Chu
  • Publication number: 20230217842
    Abstract: Various embodiments of the present application are directed towards a resistive random-access memory (RRAM) cell comprising a barrier layer to constrain the movement of metal cations during operation of the RRAM cell. In some embodiments, the RRAM cell further comprises a bottom electrode, a top electrode, a switching layer, and an active metal layer. The switching layer, the barrier layer, and the active metal layer are stacked between the bottom and top electrodes, and the barrier layer is between the switching and active metal layers. The barrier layer is conductive and between has a lattice constant less than that of the active metal layer.
    Type: Application
    Filed: March 13, 2023
    Publication date: July 6, 2023
    Inventors: Fu-Chen Chang, Kuo-Chi Tu, Wen-Ting Chu, Chu-Jie Huang
  • Publication number: 20230197847
    Abstract: The present disclosure relates to a method for forming a ferroelectric memory device. The method includes forming a dielectric layer over a semiconductor substrate and forming a first conductive layer over the dielectric layer. The first conductive layer has a first overall electronegativity. A ferroelectric layer is formed on the first conductive layer. The ferroelectric layer has a second overall electronegativity less than or equal to the first overall electronegativity. A second conductive layer is formed on the ferroelectric layer. The second conductive layer has a third overall electronegativity greater than or equal to the second overall electronegativity. The second conductive layer, the ferroelectric layer, and the first conductive layer are etched to form a polarization switching structure. An ILD layer is formed over the polarization switching structure, and a planarization process is performed on the ILD layer. A first conductive via is formed over the polarization switching structure.
    Type: Application
    Filed: February 23, 2023
    Publication date: June 22, 2023
    Inventors: Mickey Hsieh, Chun-Yang Tsai, Kuo-Ching Huang, Kuo-Chi Tu, Pili Huang, Cheng-Jun Wu, Chao-Yang Chen
  • Patent number: 11682456
    Abstract: Methods for programming memory cells of a resistive memory device include applying a voltage pulse sequence to a memory cell to set a logic state of the memory cell. An initial set sequence of voltage pulses may be applied to the memory cell, followed by a reform voltage pulse having an amplitude greater than the amplitudes of the initial set sequence, and within ±5% of the amplitude of a voltage pulse used in an initial forming process. Additional voltage pulses having amplitudes that are less than the amplitude of the reform voltage pulse may be subsequently applied. By applying a reform voltage pulse in the middle of, or at the end of, a memory set sequence including multiple voltage pulses, a resistive memory device may have a larger memory window and improved data retention relative to resistive memory devices programmed using conventional programming methods.
    Type: Grant
    Filed: August 28, 2021
    Date of Patent: June 20, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Fu-Chen Chang, Chu-Jie Huang, Nai-Chao Su, Kuo-Chi Tu, Wen-Ting Chu
  • Publication number: 20230157030
    Abstract: An integrated chip includes a memory cell within a BEOL metal interconnect. The memory cell may be an FeRAM memory cell. The memory cell is formed over a plurality of openings in a dielectric structure that includes an inter-level dielectric layer. The openings may be form an array or another two-dimensional pattern. The layers of the memory cell line the openings whereby each of a lower electrode layer, a data storage layer, and an upper electrode descend into the openings. The lower electrode layer may pass through an etch stop layer and contact a lower interconnect. There may be a plurality of top electrode vias. The top electrode vias may be offset from the opening. This memory cell structure provides a large area, which leads to low threshold voltages.
    Type: Application
    Filed: February 15, 2022
    Publication date: May 18, 2023
    Inventors: Tzu-Yu Chen, Sheng-Hung Shih, Kuo-Chi Tu
  • Patent number: 11611038
    Abstract: Various embodiments of the present application are directed towards a resistive random-access memory (RRAM) cell comprising a barrier layer to constrain the movement of metal cations during operation of the RRAM cell. In some embodiments, the RRAM cell further comprises a bottom electrode, a top electrode, a switching layer, and an active metal layer. The switching layer, the barrier layer, and the active metal layer are stacked between the bottom and top electrodes, and the barrier layer is between the switching and active metal layers. The barrier layer is conductive and between has a lattice constant less than that of the active metal layer.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: March 21, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Fu-Chen Chang, Kuo-Chi Tu, Wen-Ting Chu, Chu-Jie Huang
  • Publication number: 20230062850
    Abstract: Methods for programming memory cells of a resistive memory device include applying a voltage pulse sequence to a memory cell to set a logic state of the memory cell. An initial set sequence of voltage pulses may be applied to the memory cell, followed by a reform voltage pulse having an amplitude greater than the amplitudes of the initial set sequence, and within ±5% of the amplitude of a voltage pulse used in an initial forming process. Additional voltage pulses having amplitudes that are less than the amplitude of the reform voltage pulse may be subsequently applied. By applying a reform voltage pulse in the middle of, or at the end of, a memory set sequence including multiple voltage pulses, a resistive memory device may have a larger memory window and improved data retention relative to resistive memory devices programmed using conventional programming methods.
    Type: Application
    Filed: August 28, 2021
    Publication date: March 2, 2023
    Inventors: Fu-Chen CHANG, Chu-Jie HUANG, Nai-Chao SU, Kuo-Chi TU, Wen-Ting CHU
  • Publication number: 20230065132
    Abstract: A method for fabricating a semiconductor device is provided. The method includes depositing a ferroelectric layer over the substrate; performing a first ionized physical deposition process to deposit a top electrode layer over the ferroelectric layer; patterning the top electrode layer into a top electrode; and patterning the ferroelectric layer to into a ferroelectric element below the top electrode.
    Type: Application
    Filed: August 30, 2021
    Publication date: March 2, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tzu-Yu CHEN, Hsin-Yu LAI, Sheng-Hung SHIH, Fu-Chen CHANG, Kuo-Chi TU
  • Patent number: 11594632
    Abstract: Various embodiments of the present disclosure are directed towards a ferroelectric memory device. The ferroelectric memory device includes a pair of source/drain regions disposed in a semiconductor substrate. A gate dielectric is disposed over the semiconductor substrate and between the source/drain regions. A first conductive structure is disposed on the gate dielectric. A ferroelectric structure is disposed on the first conductive structure. A second conductive structure is disposed on the ferroelectric structure, where both the first conductive structure and the second conductive structure have an overall electronegativity that is greater than or equal to an overall electronegativity of the ferroelectric structure.
    Type: Grant
    Filed: December 10, 2020
    Date of Patent: February 28, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Mickey Hsieh, Chun-Yang Tsai, Kuo-Ching Huang, Kuo-Chi Tu, Pili Huang, Cheng-Jun Wu, Chao-Yang Chen