Patents by Inventor Chia-Hung Chu
Chia-Hung Chu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12341013Abstract: A method includes receiving a structure having a dielectric layer over a conductive feature, wherein the conductive feature includes a second metal. The method further includes etching a hole through the dielectric layer and exposing the conductive feature and depositing a first metal into the hole and in direct contact with the dielectric layer and the conductive feature, wherein the first metal entirely fills the hole. The method further includes annealing the structure such that atoms of the second metal are diffused into grain boundaries of the first metal and into interfaces between the first metal and the dielectric layer. After the annealing, the method further includes performing a chemical mechanical planarization (CMP) process to remove at least a portion of the first metal.Type: GrantFiled: June 27, 2024Date of Patent: June 24, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Sung-Li Wang, Hung-Yi Huang, Yu-Yun Peng, Mrunal A. Khaderbad, Chia-Hung Chu, Shuen-Shin Liang, Keng-Chu Lin
-
Patent number: 12334435Abstract: In some embodiments, the present disclosure relates to an integrated circuit device. A transistor structure includes a gate electrode separated from a substrate by a gate dielectric and a pair of source/drain regions disposed within the substrate on opposite sides of the gate electrode. A lower conductive plug is disposed through a lower inter-layer dielectric (ILD) layer and contacting a first source/drain region. A capping layer is disposed directly on the lower conductive plug. An upper inter-layer dielectric (ILD) layer is disposed over the capping layer and the lower ILD layer. An upper conductive plug is disposed through the upper ILD layer and directly on the capping layer.Type: GrantFiled: April 30, 2024Date of Patent: June 17, 2025Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Cheng-Wei Chang, Sung-Li Wang, Yi-Ying Liu, Chia-Hung Chu, Fang-Wei Lee
-
Patent number: 12327788Abstract: A method for manufacturing a semiconductor device includes: forming a lower metal contact in a trench of a first dielectric structure, the lower metal contact having a height less than a depth of the trench and being made of a first metal material; forming an upper metal contact to fill the trench and to be in contact with the lower metal contact, the upper metal contact being formed of a second metal material different from the first metal material and having a bottom surface with a dimension the same as a dimension of a top surface of the lower metal contact; forming a second dielectric structure on the first dielectric structure; and forming a via contact penetrating through the second dielectric structure to be electrically connected to the upper metal contact, the via contact being formed of a metal material the same as the second metal material.Type: GrantFiled: January 18, 2022Date of Patent: June 10, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Shuen-Shin Liang, Chia-Hung Chu, Po-Chin Chang, Tzu-Pei Chen, Ken-Yu Chang, Hung-Yi Huang, Harry Chien, Wei-Yip Loh, Chun-I Tsai, Hong-Mao Lee, Sung-Li Wang, Pinyen Lin
-
Patent number: 12261082Abstract: The present disclosure describes a semiconductor device with a nitrided capping layer and methods for forming the same. One method includes forming a first conductive structure in a first dielectric layer on a substrate, depositing a second dielectric layer on the first conductive structure and the first dielectric layer, and forming an opening in the second dielectric layer to expose the first conductive structure and a portion of the first dielectric layer. The method further includes forming a nitrided layer on a top portion of the first conductive structure, a top portion of the portion of the first dielectric layer, sidewalls of the opening, and a top portion of the second dielectric layer, and forming a second conductive structure in the opening, where the second conductive structure is in contact with the nitrided layer.Type: GrantFiled: January 18, 2022Date of Patent: March 25, 2025Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Po-Chin Chang, Lin-Yu Huang, Shuen-Shin Liang, Sheng-Tsung Wang, Cheng-Chi Chuang, Chia-Hung Chu, Tzu Pei Chen, Yuting Cheng, Sung-Li Wang
-
Publication number: 20250063758Abstract: A titanium precursor is used to selectively form a titanium silicide (TiSix) layer in a semiconductor device. A plasma-based deposition operation is performed in which the titanium precursor is provided into an opening, and a reactant gas and a plasma are used to cause silicon to diffuse to a top surface of a transistor structure. The diffusion of silicon results in the formation of a silicon-rich surface of the transistor structure, which increases the selectivity of the titanium silicide formation relative to other materials of the semiconductor device. The titanium precursor reacts with the silicon-rich surface to form the titanium silicide layer. The selective titanium silicide layer formation results in the formation of a titanium silicon nitride (TiSixNy) on the sidewalls in the opening, which enables a conductive structure such as a metal source/drain contact to be formed in the opening without the addition of another barrier layer.Type: ApplicationFiled: November 5, 2024Publication date: February 20, 2025Inventors: Cheng-Wei CHANG, Chia-Hung CHU, Hsu-Kai CHANG, Sung-Li WANG, Kuan-Kan HU, Shuen-Shin LIANG, Kao-Feng LIN, Hung Pin LU, Yi-Ying LIU, Chuan-Hui SHEN
-
Patent number: 12216407Abstract: A multi-spray RRC process with dynamic control to improve final yield and further reduce resist cost is disclosed. In one embodiment, a method, includes: dispensing a first layer of solvent on a semiconductor substrate while spinning at a first speed for a first time period; dispensing the solvent on the semiconductor substrate while spinning at a second speed for a second time period so as to transform the first layer to a second layer of the solvent; dispensing the solvent on the semiconductor substrate while spinning at a third speed for a third time period so as to transform the second layer to a third layer of the solvent; dispensing the solvent on the semiconductor substrate while spinning at a fourth speed for a fourth time period so as to transform the third layer to a fourth layer of the solvent; and dispensing a first layer of photoresist on the fourth layer of the solvent while spinning at a fifth speed for a fifth period of time.Type: GrantFiled: February 27, 2023Date of Patent: February 4, 2025Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Ming-Hsuan Chuang, Po-Sheng Lu, Shou-Wen Kuo, Cheng-Yi Huang, Chia-Hung Chu
-
Publication number: 20250022802Abstract: An integrated circuit (IC) with conductive structures and a method of fabricating the IC are disclosed. The method includes depositing a first dielectric layer on a semiconductor device, forming a conductive structure in the first dielectric layer, removing a portion of the first dielectric layer to expose a sidewall of the conductive structure, forming a barrier structure surrounding the sidewall of the conductive structure, depositing a conductive layer on the barrier structure, and performing a polishing process on the barrier structure and the conductive layer.Type: ApplicationFiled: July 13, 2023Publication date: January 16, 2025Applicant: Taiwan Semiconductor Manufacturing Co., LtdInventors: Tzu Pei Chen, Sung-Li Wang, Shin-Yi Yang, Po-Chin Chang, Yuting Cheng, Chia-Hung Chu, Chun-Hung Liao, Harry CHIEN, Chia-Hao Chang, Pinyen LIN
-
Publication number: 20250006803Abstract: A method includes forming a first transistor over a substrate, in which the first transistor includes first source/drain epitaxy structures; forming a second transistor over the first transistor, in which the second transistor includes second source/drain epitaxy structures; forming an opening extending through one of the second source/drain epitaxy structures and exposing a top surface of one of the first source/drain epitaxy structures; performing a first deposition process to form a first metal in the opening, in which a first void is formed in the first metal during the first deposition process; performing a first etching back process to the first metal until the first void is absent; and performing a second deposition process to form a second metal in the opening and over the first metal.Type: ApplicationFiled: June 28, 2023Publication date: January 2, 2025Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY,, LTD.Inventors: Yuting CHENG, Kuan-Kan HU, Tzu Pei CHEN, Chia-Hung CHU, Po-Chin CHANG, Sung-Li WANG
-
Patent number: 12170331Abstract: A titanium precursor is used to selectively form a titanium silicide (TiSix) layer in a semiconductor device. A plasma-based deposition operation is performed in which the titanium precursor is provided into an opening, and a reactant gas and a plasma are used to cause silicon to diffuse to a top surface of a transistor structure. The diffusion of silicon results in the formation of a silicon-rich surface of the transistor structure, which increases the selectivity of the titanium silicide formation relative to other materials of the semiconductor device. The titanium precursor reacts with the silicon-rich surface to form the titanium silicide layer. The selective titanium silicide layer formation results in the formation of a titanium silicon nitride (TiSixNy) on the sidewalls in the opening, which enables a conductive structure such as a metal source/drain contact to be formed in the opening without the addition of another barrier layer.Type: GrantFiled: February 16, 2022Date of Patent: December 17, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Cheng-Wei Chang, Chia-Hung Chu, Hsu-Kai Chang, Sung-Li Wang, Kuan-Kan Hu, Shuen-Shin Liang, Kao-Feng Lin, Hung Pin Lu, Yi-Ying Liu, Chuan-Hui Shen
-
Publication number: 20240387675Abstract: Low-resistance contacts improve performance of integrated circuit devices that feature epitaxial source/drain regions. The low resistance contacts can be used with transistors of various types, including planar field effect transistors (FETs), FinFETs, and gate-all-around (GAA) FETs. Low-resistance junctions are formed by removing an upper portion of the source/drain region and replacing it with an epitaxially-grown boron-doped silicon germanium (SiGe) material. Material resistivity can be tuned by varying the temperature during the epitaxy process. Electrical contact is then made at the low-resistance junctions.Type: ApplicationFiled: July 30, 2024Publication date: November 21, 2024Applicant: TAIWAN SEMICONDUCTOR MANUFACTURNING COMPANY, LTD.Inventors: Tsungyu HUNG, Pang-Yen TSAI, Ding-Kang SHIH, Sung-Li WANG, Chia-Hung CHU
-
Patent number: 12148807Abstract: The present disclosure describes a method to form a semiconductor device with backside contact structures. The method includes forming a semiconductor device on a first side of a substrate. The semiconductor device includes a source/drain (S/D) region. The method further includes etching a portion of the S/D region on a second side of the substrate to form an opening and forming an epitaxial contact structure on the S/D region in the opening. The second side is opposite to the first side. The epitaxial contact structure includes a first portion in contact with the S/D region in the opening and a second portion on the first portion. A width of the second portion is larger than the first portion.Type: GrantFiled: July 9, 2021Date of Patent: November 19, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chia-Hung Chu, Ding-Kang Shih, Keng-Chu Lin, Pang-Yen Tsai, Sung-Li Wang, Shuen-Shin Liang, Tsungyu Hung, Hsu-Kai Chang
-
Publication number: 20240379425Abstract: A method includes forming a device region over a substrate; forming a first dielectric layer over the device region; forming an opening in the first dielectric layer; conformally depositing a first conductive material along sidewalls and bottom surfaces of the opening; depositing a second conductive material on the first conductive material to fill the opening, wherein the second conductive material is different from the first conductive material; and performing a first thermal process to form an interface region extending from a first region of the first conductive material to a second region of the second conductive material, wherein the interface region includes a homogeneous mixture of the first conductive material and the second conductive material.Type: ApplicationFiled: July 23, 2024Publication date: November 14, 2024Inventors: Bo-Yu Lai, Chin-Szu Lee, Szu-Hua Wu, Shuen-Shin Liang, Chia-Hung Chu, Keng-Chu Lin, Sung-Li Wang
-
Publication number: 20240371952Abstract: The present disclosure describes a method to form a semiconductor device with backside contact structures. The method includes forming a semiconductor device on a first side of a substrate. The semiconductor device includes a source/drain (S/D) region. The method further includes etching a portion of the S/D region on a second side of the substrate to form an opening and forming an epitaxial contact structure on the S/D region in the opening. The second side is opposite to the first side. The epitaxial contact structure includes a first portion in contact with the S/D region in the opening and a second portion on the first portion. A width of the second portion is larger than the first portion.Type: ApplicationFiled: July 11, 2024Publication date: November 7, 2024Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Chia-Hung CHU, Tsungyu Hung, Hsu-Kai Chang, Ding-Kang Shih, Keng-Chu Lin, Pang-Yen Tsai, Sung-Li Wang, Shuen-Shin Liang
-
Publication number: 20240363704Abstract: A semiconductor device structure according to the present disclosure includes a source feature and a drain feature, at least one channel structure extending between the source feature and the drain feature, a gate structure wrapped around each of the at least one channel structure, a semiconductor layer over the gate structure, a dielectric layer over the semiconductor layer, a doped semiconductor feature extending through the semiconductor layer and the dielectric layer to be in contact with the source feature, a metal contact plug over the doped semiconductor feature, and a buried power rail disposed over the metal contact plug.Type: ApplicationFiled: July 12, 2024Publication date: October 31, 2024Inventors: Chia-Hung Chu, Tsungyu Hung, Hsu-Kai Chang, Ding-Kang Shih, Keng-Chu Lin, Pang-Yen Tsai, Sung-Li Wang, Shuen-Shin Liang
-
Publication number: 20240355742Abstract: The present disclosure describes a method for the fabrication of ruthenium conductive structures over cobalt conductive structures. In some embodiments, the method includes forming a first opening in a dielectric layer to expose a first cobalt contact and filling the first opening with ruthenium metal to form a ruthenium contact on the first cobalt contact. The method also includes forming a second opening in the dielectric layer to expose a second cobalt contact and a gate structure and filling the second opening with tungsten to form a tungsten contact on the second cobalt contact and the gate structure. Further, the method includes forming a copper conductive structure on the ruthenium contact and the tungsten contact, where the copper from the copper conductive structure is in contact with the ruthenium metal from the ruthenium contact.Type: ApplicationFiled: July 1, 2024Publication date: October 24, 2024Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Cheng-Wei Chang, Chien-Shun Liao, Sung-Li Wang, Shuen-Shin Liang, Shu-Lan Chang, Yi-Ying Liu, Chia-Hung Chu, Hsu-Kai Chang
-
Publication number: 20240355741Abstract: The present disclosure describes a method for forming capping layers configured to prevent the migration of out-diffused cobalt atoms into upper metallization layers In some embodiments, the method includes depositing a cobalt diffusion barrier layer on a liner-free conductive structure that includes ruthenium, where depositing the cobalt diffusion barrier layer includes forming the cobalt diffusion barrier layer self-aligned to the liner-free conductive structure. The method also includes depositing, on the cobalt diffusion barrier layer, a stack with an etch stop layer and dielectric layer, and forming an opening in the stack to expose the cobalt diffusion barrier layer. Finally, the method includes forming a conductive structure on the cobalt diffusion barrier layer.Type: ApplicationFiled: July 1, 2024Publication date: October 24, 2024Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Shuen-Shin LIANG, Chun-I TSAI, Chih-Wei CHANG, Chun-Hsien HUANG, Hung-Yi HUANG, Keng-Chu LIN, Ken-Yu CHANG, Sung-Li WANG, Chia-Hung CHU, Hsu-Kai CHANG
-
Publication number: 20240347342Abstract: A method includes receiving a structure having a dielectric layer over a conductive feature, wherein the conductive feature includes a second metal. The method further includes etching a hole through the dielectric layer and exposing the conductive feature and depositing a first metal into the hole and in direct contact with the dielectric layer and the conductive feature, wherein the first metal entirely fills the hole. The method further includes annealing the structure such that atoms of the second metal are diffused into grain boundaries of the first metal and into interfaces between the first metal and the dielectric layer. After the annealing, the method further includes performing a chemical mechanical planarization (CMP) process to remove at least a portion of the first metal.Type: ApplicationFiled: June 27, 2024Publication date: October 17, 2024Inventors: Sung-Li Wang, Hung-Yi Huang, Yu-Yun Peng, Mrunal A. Khaderbad, Chia-Hung Chu, Shuen-Shin Liang, Keng-Chu Lin
-
Publication number: 20240339497Abstract: A semiconductor device with dual side source/drain (S/D) contact structures and methods of fabricating the same are disclosed. The semiconductor device includes first and second S/D regions, a nanostructured channel region disposed between the first and second S/D regions, a gate structure surrounding the nanostructured channel region, first and second contact structures disposed on first surfaces of the first and second S/D regions, a third contact structure disposed on a second surface of the first S/D region, and an etch stop layer disposed on a second surface of the second S/D region. The third contact structure includes a metal silicide layer, a silicide nitride layer disposed on the metal silicide layer, and a conductive layer disposed on the silicide nitride layer.Type: ApplicationFiled: June 18, 2024Publication date: October 10, 2024Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Cheng-Wei Chang, Shuen-Shin Liang, Sung-Li Wang, Hsu-Kai Chang, Chia-Hung Chu, Chien-Shun Liao, Yi-Ying Liu
-
Publication number: 20240332393Abstract: A semiconductor device with different configurations of contact structures and a method of fabricating the same are disclosed. The semiconductor device includes first and second gate structures disposed on first and second fin structures, first and second source/drain (S/D) regions disposed on the first and second fin structures, first and second contact structures disposed on the first and second S/D regions, and a dipole layer disposed at an interface between the first nWFM silicide layer and the first S/D region. The first contact structure includes a first nWFM silicide layer disposed on the first S/D region and a first contact plug disposed on the first nWFM silicide layer. The second contact structure includes a pWFM silicide layer disposed on the second S/D region, a second nWFM silicide layer disposed on the pWFM silicide layer, and a second contact plug disposed on the pWFM silicide layer.Type: ApplicationFiled: June 13, 2024Publication date: October 3, 2024Applicant: Taiwan Semiconductor Manufacturing Company, LTD.Inventors: Hsu-Kai CHANG, Jhih-Rong HUANG, Yen-Tien TUNG, Chia-Hung CHU, Shuen-Shin LIANG, Tzer-Min SHEN, Pinyen LIN, Sung-Li WANG
-
Publication number: 20240313075Abstract: The present disclosure provides a method for semiconductor fabrication. The method includes depositing a first metal layer by a first deposition over a source/drain (S/D) feature and over side portions of a trench exposing the S/D feature. The first metal layer is thicker over the S/D feature than over side portions of the trench. The method includes growing a metal on the first metal layer by a second deposition to form a second metal layer filling up the trench. The second deposition is different from the first deposition and the growing of the metal in a vertical direction is grown at a faster rate than the growing of the metal in a horizontal direction. After growing the metal to form the second metal layer, the method includes planarizing the first and second metal layers to form an S/D contact. The method forms an S/D via on the second metal layer.Type: ApplicationFiled: March 13, 2023Publication date: September 19, 2024Inventors: Shuen-Shin LIANG, Kan-Ju LIN, Chia-Hung CHU, Chien CHANG, Harry CHIEN, Sung-Li WANG