Patents by Inventor Chia-Jen Chen

Chia-Jen Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210111280
    Abstract: A semiconductor device and method of forming thereof includes a first fin and a second fin each extending from a substrate. A first gate segment is disposed over the first fin and a second gate segment is disposed over the second fin. An interlayer dielectric (ILD) layer is adjacent the first gate segment and the second gate segment. A cut region (e.g., opening or gap between first gate structure and the second gate structure) extends between the first and second gate segments. The cut region has a first portion has a first width and a second portion has a second width, the second width is greater than the first width. The second portion interposes the first and second gate segments and the first portion is defined within the ILD layer.
    Type: Application
    Filed: December 21, 2020
    Publication date: April 15, 2021
    Inventors: I-Wei YANG, Chih-Chang HUNG, Shu-Yuan KU, Ryan Chia-Jen CHEN, Ming-Ching CHANG
  • Publication number: 20210090958
    Abstract: A conductive gate over a semiconductor fin is cut into a first conductive gate and a second conductive gate. An oxide is removed from sidewalls of the first conductive gate and a dielectric material is applied to the sidewalls. Spacers adjacent to the conductive gate are removed to form voids, and the voids are capped with a dielectric material to form air spacers.
    Type: Application
    Filed: December 7, 2020
    Publication date: March 25, 2021
    Inventors: Shu-Uei Jang, Chen-Huang Huang, Ryan Chia-Jen Chen, Shiang-Bau Wang, Shu-Yuan Ku
  • Patent number: 10957600
    Abstract: A method includes forming a patterned etching mask, which includes a plurality of strips, and etching a semiconductor substrate underlying the patterned etching mask to form a first plurality of semiconductor fins and a second plurality of semiconductor fins. The patterned etching mask is used as an etching mask in the etching. The method further includes etching the second plurality of semiconductor fins without etching the first plurality of semiconductor fins. An isolation region is then formed, and the first plurality of semiconductor fins has top portions protruding higher than a top surface of the isolation region.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: March 23, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ryan Chia-Jen Chen, Yih-Ann Lin, Chia Tai Lin, Chao-Cheng Chen
  • Patent number: 10943828
    Abstract: Metal gate cutting techniques for fin-like field effect transistors (FinFETs) are disclosed herein. An exemplary method includes receiving an integrated circuit (IC) device structure that includes a substrate, one or more fins disposed over the substrate, a plurality of gate structures disposed over the fins, a dielectric layer disposed between and adjacent to the gate structures, and a patterning layer disposed over the gate structures. The gate structures traverses the fins and includes first and second gate structures. The method further includes: forming an opening in the patterning layer to expose a portion of the first gate structure, a portion of the second gate structure, and a portion of the dielectric layer; and removing the exposed portion of the first gate structure, the exposed portion of the second gate structure, and the exposed portion of the dielectric layer.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: March 9, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ya-Yi Tsai, Yi-Hsuan Hsiao, Shu-Yuan Ku, Ryan Chia-Jen Chen, Ming-Ching Chang
  • Publication number: 20210055646
    Abstract: In a method of manufacturing a photo mask for lithography, circuit pattern data are acquired. A pattern density, which is a total pattern area per predetermined area, is calculated from the circuit pattern data. Dummy pattern data for areas having pattern density less than a threshold density are generated. Mask drawing data is generated from the circuit pattern data and the dummy pattern data. By using an electron beam from an electron beam lithography apparatus, patterns are drawn according to the mask drawing data on a resist layer formed on a mask blank substrate. The drawn resist layer is developed using a developing solution. Dummy patterns included in the dummy pattern data are not printed as a photo mask pattern when the resist layer is exposed with the electron beam and is developed.
    Type: Application
    Filed: October 26, 2020
    Publication date: February 25, 2021
    Inventors: Chien-Cheng CHEN, Chia-Jen CHEN, Hsin-Chang LEE, Shih-Ming CHANG, Tran-Hui SHEN, Yen-Cheng HO, Chen-Shao HSU
  • Publication number: 20210050350
    Abstract: Methods of cutting gate structures, and structures formed, are described. In an embodiment, a structure includes first and second gate structures over an active area, and a gate cut-fill structure. The first and second gate structures extend parallel. The active area includes a source/drain region disposed laterally between the first and second gate structures. The gate cut-fill structure has first and second primary portions and an intermediate portion. The first and second primary portions abut the first and second gate structures, respectively. The intermediate portion extends laterally between the first and second primary portions. First and second widths of the first and second primary portions along longitudinal midlines of the first and second gate structures, respectively, are each greater than a third width of the intermediate portion midway between the first and second gate structures and parallel to the longitudinal midline of the first gate structure.
    Type: Application
    Filed: October 30, 2020
    Publication date: February 18, 2021
    Inventors: Chih-Chang Hung, Chia-Jen Chen, Ming-Ching Chang, Shu-Yuan Ku, Yi-Hsuan Hsiao, I-Wei Yang
  • Patent number: 10916477
    Abstract: A method of forming a semiconductor device includes forming a first fin and a second fin protruding above a substrate; forming isolation regions on opposing sides of the first fin and the second fin; forming a metal gate over the first fin and over the second fin, the metal gate being surrounded by a first dielectric layer; and forming a recess in the metal gate between the first fin and the second fin, where the recess extends from an upper surface of the metal gate distal the substrate into the metal gate, where the recess has an upper portion distal the substrate and a lower portion between the upper portion and the substrate, where the upper portion has a first width, and the lower portion has a second width larger than the first width, the first width and the second width measured along a longitudinal direction of the metal gate.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: February 9, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Chang Hung, Chieh-Ning Feng, Chun-Liang Lai, Yih-Ann Lin, Ryan Chia-Jen Chen
  • Patent number: 10879074
    Abstract: A method of forming a semiconductor device includes removing a top portion of a dielectric layer surrounding a metal gate to form a recess in the dielectric layer; filling the recess with a capping structure; forming a patterned hard mask over the capping structure and over the metal gate, wherein a portion of the metal gate, a portion of the capping structure, and a portion of the dielectric layer are aligned vertically with an opening of the patterned hard mask; and performing an etch process on said portions of the metal gate, the capping structure, and the dielectric layer that are aligned vertically with the opening of the patterned hard mask, wherein the capping structure has an etch resistance higher than an etch resistance of the dielectric layer during the etch process.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: December 29, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shu-Uei Jang, Chien-Hua Tseng, Chung-Shu Wu, Ya-Yi Tsai, Ryan Chia-Jen Chen, An-Chyi Wei
  • Patent number: 10872978
    Abstract: A semiconductor device and method of forming thereof includes a first fin and a second fin each extending from a substrate. A first gate segment is disposed over the first fin and a second gate segment is disposed over the second fin. An interlayer dielectric (ILD) layer is adjacent the first gate segment and the second gate segment. A cut region (e.g., opening or gap between first gate structure and the second gate structure) extends between the first and second gate segments. The cut region has a first portion has a first width and a second portion has a second width, the second width is greater than the first width. The second portion interposes the first and second gate segments and the first portion is defined within the ILD layer.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: December 22, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: I-Wei Yang, Chih-Chang Hung, Shu-Yuan Ku, Ryan Chia-Jen Chen, Ming-Ching Chang
  • Patent number: 10867998
    Abstract: Methods of cutting gate structures, and structures formed, are described. In an embodiment, a structure includes first and second gate structures over an active area, and a gate cut-fill structure. The first and second gate structures extend parallel. The active area includes a source/drain region disposed laterally between the first and second gate structures. The gate cut-fill structure has first and second primary portions and an intermediate portion. The first and second primary portions abut the first and second gate structures, respectively. The intermediate portion extends laterally between the first and second primary portions. First and second widths of the first and second primary portions along longitudinal midlines of the first and second gate structures, respectively, are each greater than a third width of the intermediate portion midway between the first and second gate structures and parallel to the longitudinal midline of the first gate structure.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: December 15, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Chang Hung, Chia-Jen Chen, Ming-Ching Chang, Shu-Yuan Ku, Yi-Hsuan Hsiao, I-Wei Yang
  • Patent number: 10866504
    Abstract: A lithography mask includes a substrate, a reflective structure disposed over a first side of the substrate, and a patterned absorber layer disposed over the reflective structure. The lithography mask includes a first region and a second region that surrounds the first region in a top view. The patterned absorber layer is located in the first region. A substantially non-reflective material is located in the second region. The lithography mask is formed by forming a reflective structure over a substrate, forming an absorber layer over the reflective structure, defining a first region of the lithography mask, and defining a second region of the lithography mask. The defining of the first region includes patterning the absorber layer. The second region is defined to surround the first region in a top view. The defining of the second region includes forming a substantially non-reflective material in the second region.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: December 15, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chin-Hsiang Lin, Chien-Cheng Chen, Hsin-Chang Lee, Chia-Jen Chen, Pei-Cheng Hsu, Yih-Chen Su, Gaston Lee, Tran-Hui Shen
  • Patent number: 10867807
    Abstract: A method includes forming a metal gate structure over a first fin, where the metal gate structure is surrounded by a first dielectric material, and forming a capping layer over the first dielectric material, where an etch selectivity between the metal gate structure and the capping layer is over a pre-determined threshold. The method also includes forming a patterned hard mask layer over the first fin and the first dielectric material, where an opening of the patterned hard mask layer exposes a portion of the metal gate structure and a portion of the capping layer. The method further includes removing the portion of the metal gate structure exposed by the opening of the patterned hard mask layer.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: December 15, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming-Jie Huang, Syun-Ming Jang, Ryan Chia-Jen Chen, Ming-Ching Chang, Shu-Yuan Ku, Tai-Chun Huang, Chunyao Wang, Tze-Liang Lee, Chi On Chui
  • Patent number: 10861746
    Abstract: A conductive gate over a semiconductor fin is cut into a first conductive gate and a second conductive gate. An oxide is removed from sidewalls of the first conductive gate and a dielectric material is applied to the sidewalls. Spacers adjacent to the conductive gate are removed to form voids, and the voids are capped with a dielectric material to form air spacers.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: December 8, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shu-Uei Jang, Chen-Huang Huang, Ryan Chia-Jen Chen, Shiang-Bau Wang, Shu-Yuan Ku
  • Patent number: 10833077
    Abstract: Methods of cutting gate structures, and structures formed, are described. In an embodiment, a structure includes first and second gate structures over an active area, and a gate cut-fill structure. The first and second gate structures extend parallel. The active area includes a source/drain region disposed laterally between the first and second gate structures. The gate cut-fill structure has first and second primary portions and an intermediate portion. The first and second primary portions abut the first and second gate structures, respectively. The intermediate portion extends laterally between the first and second primary portions. First and second widths of the first and second primary portions along longitudinal midlines of the first and second gate structures, respectively, are each greater than a third width of the intermediate portion midway between the first and second gate structures and parallel to the longitudinal midline of the first gate structure.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: November 10, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Chang Hung, Chia-Jen Chen, Ming-Ching Chang, Shu-Yuan Ku, Yi-Hsuan Hsiao, I-Wei Yang
  • Publication number: 20200350172
    Abstract: A method of forming a semiconductor device includes etching a gate stack to form a trench extending into the gate stack, forming a dielectric layer on a sidewall of the gate stack, with the sidewall exposed to the trench, and etching the dielectric layer to remove a first portion of the dielectric layer at a bottom of the trench. A second portion of the dielectric layer on the sidewall of the gate stack remains after the dielectric layer is etched. After the first portion of the dielectric layer is removed, the second portion of the dielectric layer is removed to reveal the sidewall of the gate stack. The trench is filled with a dielectric region, which contacts the sidewall of the gate stack.
    Type: Application
    Filed: July 13, 2020
    Publication date: November 5, 2020
    Inventors: Shu-Uei Jang, Ya-Yi Tsai, Ryan Chia-Jen Chen, An Chyi Wei, Shu-Yuan Ku
  • Patent number: 10816892
    Abstract: In a method of manufacturing a photo mask for lithography, circuit pattern data are acquired. A pattern density, which is a total pattern area per predetermined area, is calculated from the circuit pattern data. Dummy pattern data for areas having pattern density less than a threshold density are generated. Mask drawing data is generated from the circuit pattern data and the dummy pattern data. By using an electron beam from an electron beam lithography apparatus, patterns are drawn according to the mask drawing data on a resist layer formed on a mask blank substrate. The drawn resist layer is developed using a developing solution. Dummy patterns included in the dummy pattern data are not printed as a photo mask pattern when the resist layer is exposed with the electron beam and is developed.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: October 27, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chien-Cheng Chen, Chia-Jen Chen, Hsin-Chang Lee, Shih-Ming Chang, Tran-Hui Shen, Yen-CHeng Ho, Chen-Shao Hsu
  • Publication number: 20200312709
    Abstract: A method of forming a FinFET device includes following steps. A substrate is provided with a plurality of fins thereon, an isolation layer thereon covering lower portions of the fins, a plurality of dummy strips across the fins, and a dielectric layer aside the dummy strips. The dummy strips is cut to form a trench in the dielectric layer. A first insulating structure is formed in the trench, wherein first and second groups of the dummy strips are beside the first insulating structure. A dummy strip is removed from the first group of the dummy strips to form a first opening that exposes portions of the fins under the dummy strip. The portions of the fins are removed to form a plurality of second openings below the first opening, wherein each second opening has a middle-wide profile. A second insulating structure is formed in the first and second openings.
    Type: Application
    Filed: May 14, 2020
    Publication date: October 1, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jih-Jse Lin, Ryan Chia-Jen Chen, Fang-Cheng Chen, Ming-Ching Chang
  • Publication number: 20200294804
    Abstract: A method of forming a semiconductor device includes removing a top portion of a dielectric layer surrounding a metal gate to form a recess in the dielectric layer; filling the recess with a capping structure; forming a patterned hard mask over the capping structure and over the metal gate, wherein a portion of the metal gate, a portion of the capping structure, and a portion of the dielectric layer are aligned vertically with an opening of the patterned hard mask; and performing an etch process on said portions of the metal gate, the capping structure, and the dielectric layer that are aligned vertically with the opening of the patterned hard mask, wherein the capping structure has an etch resistance higher than an etch resistance of the dielectric layer during the etch process.
    Type: Application
    Filed: June 1, 2020
    Publication date: September 17, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shu-Uei JANG, Chien-Hua TSENG, Chung-Shu WU, Ya-Yi TSAI, Ryan Chia-Jen CHEN, An-Chyi WEI
  • Patent number: 10714347
    Abstract: A method of forming a semiconductor device includes etching a gate stack to form a trench extending into the gate stack, forming a dielectric layer on a sidewall of the gate stack, with the sidewall exposed to the trench, and etching the dielectric layer to remove a first portion of the dielectric layer at a bottom of the trench. A second portion of the dielectric layer on the sidewall of the gate stack remains after the dielectric layer is etched. After the first portion of the dielectric layer is removed, the second portion of the dielectric layer is removed to reveal the sidewall of the gate stack. The trench is filled with a dielectric region, which contacts the sidewall of the gate stack.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: July 14, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shu-Uei Jang, Ya-Yi Tsai, Ryan Chia-Jen Chen, An Chyi Wei, Shu-Yuan Ku
  • Publication number: 20200176318
    Abstract: A conductive gate over a semiconductor fin is cut into a first conductive gate and a second conductive gate. An oxide is removed from sidewalls of the first conductive gate and a dielectric material is applied to the sidewalls. Spacers adjacent to the conductive gate are removed to form voids, and the voids are capped with a dielectric material to form air spacers.
    Type: Application
    Filed: May 1, 2019
    Publication date: June 4, 2020
    Inventors: Shu-Uei Jang, Chen-Huang Huang, Ryan Chia-Jen Chen, Shiang-Bau Wang, Shu-Yuan Ku