Patents by Inventor Chieh-An YEH

Chieh-An YEH has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190355835
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a substrate having a plurality of nanowires over an input-output region, and a protective layer surrounding the nanowires. The protective layer is made of silicon, silicon germanium, silicon oxide, silicon nitride, silicon sulfide, or a combination thereof. The semiconductor device structure also includes a high-k dielectric layer surrounding the protective layer, and a gate electrode surrounding the high-k dielectric layer. The semiconductor device structure further includes a source/drain portion adjacent to the gate electrode, and an interlayer dielectric layer over the source/drain portion.
    Type: Application
    Filed: August 1, 2019
    Publication date: November 21, 2019
    Inventors: Chao-Ching CHENG, Wei-Sheng YUN, Shao-Ming YU, Tsung-Lin LEE, Chih-Chieh YEH
  • Patent number: 10483262
    Abstract: A method for manufacturing a semiconductor device includes forming a fin structure over a substrate and forming a first gate structure over a first portion of the fin structure. A first nitride layer is formed over a second portion of the fin structure. The first nitride layer is exposed to ultraviolet radiation. Source/drain regions are formed at the second portion of the fin structure.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: November 19, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yu-Lin Yang, Chia-Cheng Ho, Chih Chieh Yeh, Cheng-Yi Peng, Tsung-Lin Lee
  • Patent number: 10483157
    Abstract: In a method of forming a semiconductor device including a fin field effect transistor (FinFET), a first sacrificial layer is formed over a source/drain structure of a FinFET structure and an isolation insulating layer. The first sacrificial layer is patterned, thereby forming an opening. A first liner layer is formed on the isolation insulating layer in a bottom of opening and at least side faces of the patterned first sacrificial layer. After the first liner layer is formed, a dielectric layer is formed in the opening. After the dielectric layer is formed, the patterned first sacrificial layer is removed, thereby forming a contact opening over the source/drain structure. A conductive layer is formed in the contact opening.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: November 19, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Meng-Hsuan Hsiao, Yee-Chia Yeo, Tung Ying Lee, Chih Chieh Yeh
  • Publication number: 20190341482
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a substrate and a stacked wire structure formed over the substrate. The semiconductor device structure also includes a gate structure formed over a middle portion of the stacked wire structure and a source/drain (S/D) structure formed at two opposite sides of the stacked wire structure. The S/D structure includes a top surface, a sidewall surface, and a rounded corner between the top surface and the sidewall surface.
    Type: Application
    Filed: July 15, 2019
    Publication date: November 7, 2019
    Inventors: Cheng-Hsien Wu, Chih-Chieh Yeh, Yee-Chia Yeo
  • Publication number: 20190326419
    Abstract: A semiconductor device comprises a fin structure disposed over a substrate; a gate structure disposed over part of the fin structure; a source/drain structure, which includes part of the fin structure not covered by the gate structure; an interlayer dielectric layer formed over the fin structure, the gate structure, and the source/drain structure; a contact hole formed in the interlayer dielectric layer; and a contact material disposed in the contact hole. The fin structure extends in a first direction and includes an upper layer, wherein a part of the upper layer is exposed from an isolation insulating layer. The gate structure extends in a second direction perpendicular to the first direction. The contact material includes a silicon phosphide layer and a metal layer.
    Type: Application
    Filed: July 1, 2019
    Publication date: October 24, 2019
    Inventors: Cheng-Yi PENG, Chih Chieh YEH, Chih-Sheng CHANG, Hung-Li CHIANG, Hung-Ming CHEN, Yee-Chia YEO
  • Patent number: 10438851
    Abstract: A semiconductor structure includes a plurality of first semiconductor layers interleaved with a plurality of second semiconductor layers. The first and second semiconductor layers have different material compositions. A dummy gate stack is formed over an uppermost first semiconductor layer. A first etching process is performed to remove portions of the second semiconductor layer that are not disposed below the dummy gate stack, thereby forming a plurality of voids. The first etching process has an etching selectivity between the first semiconductor layer and the second semiconductor layer. Thereafter, a second etching process is performed to enlarge the voids.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: October 8, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hung-Li Chiang, Szu-Wei Huang, Huan-Sheng Wei, Jon-Hsu Ho, Chih Chieh Yeh, Wen-Hsing Hsieh, Chung-Cheng Wu, Yee-Chia Yeo
  • Publication number: 20190279911
    Abstract: Nanowire devices and fin devices are formed in a first region and a second region of a substrate. To form the devices, alternating layers of a first material and a second material are formed, inner spacers are formed adjacent to the layers of the first material, and then the layers of the first material are removed to form nanowires without removing the layers of the first material within the second region. Gate structures of gate dielectrics and gate electrodes are formed within the first region and the second region in order to form the nanowire devices in the first region and the fin devices in the second region.
    Type: Application
    Filed: May 20, 2019
    Publication date: September 12, 2019
    Inventors: Chao-Ching Cheng, Tzu-Chiang Chen, Chen-Feng Hsu, Yu-Lin Yang, Tung Ying Lee, Chih Chieh Yeh
  • Publication number: 20190267376
    Abstract: A semiconductor device includes a substrate, a first source/drain structure, a vertical channel layer, a gate structure, a second source/drain structure and a body epitaxial layer. The first source/drain structure is over the substrate. The vertical channel layer is over the first source/drain structure. The gate structure is on a first sidewall of the vertical channel layer. The second source/drain structure is over the vertical channel layer. The body epitaxial layer is on a second sidewall of the vertical channel layer. The body epitaxial layer and the vertical channel layer are of opposite conductivity types, and the body epitaxial layer is separated from the gate structure.
    Type: Application
    Filed: April 22, 2019
    Publication date: August 29, 2019
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hung-Li CHIANG, Szu-Wei HUANG, Chih-Chieh YEH, Yee-Chia YEO
  • Publication number: 20190267293
    Abstract: An integrated circuit device includes a substrate having a first portion in a first device region and a second portion in a second device region. A first semiconductor strip is in the first device region. A dielectric liner has an edge contacting a sidewall of the first semiconductor strip, wherein the dielectric liner is configured to apply a compressive stress or a tensile stress to the first semiconductor strip. A Shallow Trench Isolation (STI) region is over the dielectric liner, wherein a sidewall and a bottom surface of the STI region is in contact with a sidewall and a top surface of the dielectric liner.
    Type: Application
    Filed: May 13, 2019
    Publication date: August 29, 2019
    Inventors: Tsung-Lin Lee, Chih Chieh Yeh, Feng Yuan, Hung-Li Chiang, Wei-Jen Lai
  • Publication number: 20190245065
    Abstract: A device includes a substrate, a first doping portion, a second doping portion, a channel, a semiconductor film, a high-k layer, and a gate. The first doping portion and the second doping portion are over the substrate. The channel is over the substrate and between the first doping portion and the second doping portion. The semiconductor film is around the channel. The high-k layer is around the semiconductor film. The gate is over the high-k layer.
    Type: Application
    Filed: April 22, 2019
    Publication date: August 8, 2019
    Inventors: I-Sheng CHEN, Cheng-Hsien WU, Chih-Chieh YEH
  • Patent number: 10374059
    Abstract: Structures and formation methods of a semiconductor device structure are provided. The method includes providing a substrate having a base portion and a fin portion over the base portion. The fin portion has a channel region and a source/drain region. The method also includes forming a stack structure over the fin portion. The stack structure includes first and second semiconductor layers. The method also includes forming a source/drain portion in the stack structure at the source/drain region, and removing a portion of the second semiconductor layer in the channel region in an etching process. The remaining portion of the first semiconductor layer in the channel region forms a nanowire. The method further includes forming a gate dielectric layer surrounding the nanowire, forming a high-k dielectric layer surrounding the gate dielectric layer, and forming a gate electrode surrounding the high-k dielectric layer.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: August 6, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chao-Ching Cheng, Wei-Sheng Yun, Shao-Ming Yu, Tsung-Lin Lee, Chih-Chieh Yeh
  • Patent number: 10355133
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a stacked wire structure over a substrate and forming a gate structure across middle portions of the stacked wire structure. A trench can be formed by removing the gate structure, in which a middle portion of the stacked wire structure is exposed. The method further includes removing a portion of the stacked wire structure to form a recess and forming a source/drain (S/D) structure at two opposite sides of the stacked wire structure, where the S/D structure is formed by an epitaxial process and includes a top surface, a sidewall surface, and a rounded corner between the top surface and the sidewall surface.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: July 16, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Hsien Wu, Chih-Chieh Yeh, Yee-Chia Yeo
  • Patent number: 10340366
    Abstract: A semiconductor device comprises a fin structure disposed over a substrate; a gate structure disposed over part of the fin structure; a source/drain structure, which includes part of the fin structure not covered by the gate structure; an interlayer dielectric layer formed over the fin structure, the gate structure, and the source/drain structure; a contact hole formed in the interlayer dielectric layer; and a contact material disposed in the contact hole. The fin structure extends in a first direction and includes an upper layer, wherein a part of the upper layer is exposed from an isolation insulating layer. The gate structure extends in a second direction perpendicular to the first direction. The contact material includes a silicon phosphide layer and a metal layer.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: July 2, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cheng-Yi Peng, Chih Chieh Yeh, Chih-Sheng Chang, Hung-Li Chiang, Hung-Ming Chen, Yee-Chia Yeo
  • Patent number: 10328812
    Abstract: A power supply system with automatic switchover voltage for vehicle control unit is proposed. The system comprises a supply communication module configured to communicate with a vehicle control unit, the supply communication module comprising a power supply module to provide power for a vehicle control unit; and a communication device coupled to the supply communication module for showing power supply status; wherein the supply communication module provides a first direct voltage and communicates with the vehicle control unit before supplying power, and if the supply communication module does not receive any message from the vehicle control unit within a first time interval, the supply communication module automatically switches to a second direct voltage from the first direct voltage or automatically increases the first direct voltage within a second time interval, and supplies power to the vehicle control unit; and wherein the second direct voltage is greater than the first direct voltage.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: June 25, 2019
    Assignee: Phihong Technology Co., Ltd.
    Inventors: Chun-Chen Chen, Jian-Hsieng Lee, Ying-Chieh Yeh, Hsiao-Tung Ku
  • Publication number: 20190172939
    Abstract: A semiconductor device includes first channel layers disposed over a substrate, a first source/drain region disposed over the substrate, a gate dielectric layer disposed on each of the first channel layers, a gate electrode layer disposed on the gate dielectric. Each of the first channel layers includes a semiconductor wire made of a first semiconductor material. The semiconductor wire passes through the first source/drain region and enters into an anchor region. At the anchor region, the semiconductor wire has no gate electrode layer and no gate dielectric, and is sandwiched by a second semiconductor material.
    Type: Application
    Filed: November 30, 2018
    Publication date: June 6, 2019
    Inventors: I-Sheng CHEN, Chih Chieh YEH, Cheng-Hsien WU
  • Patent number: 10297508
    Abstract: Nanowire devices and fin devices are formed in a first region and a second region of a substrate. To form the devices, alternating layers of a first material and a second material are formed, inner spacers are formed adjacent to the layers of the first material, and then the layers of the first material are removed to form nanowires without removing the layers of the first material within the second region. Gate structures of gate dielectrics and gate electrodes are formed within the first region and the second region in order to form the nanowire devices in the first region and the fin devices in the second region.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: May 21, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chao-Ching Cheng, Tzu-Chiang Chen, Chen-Feng Hsu, Yu-Lin Yang, Tung Ying Lee, Chih Chieh Yeh
  • Publication number: 20190146804
    Abstract: A method for synchronization of system management data includes steps of generating a request for system management data in response to execution of a system booting program, transmitting the request to a baseboard management controller so as to enable the baseboard management controller to transmit the system management data stored in a second storage unit to a processor; receiving the system management data from the baseboard management controller, and determining whether the system management data is complete; and when it is determined that the system management data is complete, storing at least one of the sequential packets of the system management data in a first storage unit, and proceeding with execution of the system booting program.
    Type: Application
    Filed: November 15, 2018
    Publication date: May 16, 2019
    Inventors: Po-Wen HUANG, Le XING, Bichao WANG, Cheng-Chieh YEH, Jie ZHANG, Chen-Nan HSIAO
  • Patent number: 10290546
    Abstract: A semiconductor structure includes a plurality of first semiconductor layers interleaved with a plurality of second semiconductor layers. The first and second semiconductor layers have different material compositions. A dummy gate stack is formed over an uppermost first semiconductor layer. A first etching process is performed to remove portions of the second semiconductor layer that are not disposed below the dummy gate stack, thereby forming a plurality of voids. The first etching process has an etching selectivity between the first semiconductor layer and the second semiconductor layer. Thereafter, a second etching process is performed to enlarge the voids.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: May 14, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hung-Li Chiang, Szu-Wei Huang, Huan-Sheng Wei, Jon-Hsu Ho, Chih Chieh Yeh, Wen-Hsing Hsieh, Chung-Cheng Wu, Yee-Chia Yeo
  • Patent number: 10290550
    Abstract: An integrated circuit device includes a substrate having a first portion in a first device region and a second portion in a second device region. A first semiconductor strip is in the first device region. A dielectric liner has an edge contacting a sidewall of the first semiconductor strip, wherein the dielectric liner is configured to apply a compressive stress or a tensile stress to the first semiconductor strip. A Shallow Trench Isolation (STI) region is over the dielectric liner, wherein a sidewall and a bottom surface of the STI region is in contact with a sidewall and a top surface of the dielectric liner.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: May 14, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Lin Lee, Chih Chieh Yeh, Feng Yuan, Hung-Li Chiang, Wei-Jen Lai
  • Publication number: 20190139838
    Abstract: A semiconductor device includes an n-channel, a p-channel, a first gate dielectric layer, a second gate dielectric layer, a second dielectric sheath layer, and a metal gate. The first gate dielectric layer is around the n-channel. The first dielectric sheath layer is around the first gate dielectric layer. The second gate dielectric layer is around the p-channel. The second dielectric sheath layer is around the second gate dielectric layer, in which the first dielectric sheath layer and the second dielectric sheath layer comprise different materials. The metal gate electrode is around the first dielectric sheath layer and the second dielectric sheath layer.
    Type: Application
    Filed: December 28, 2018
    Publication date: May 9, 2019
    Inventors: I-Sheng CHEN, Tzu-Chiang CHEN, Cheng-Hsien WU, Chih-Chieh YEH, Chih-Sheng CHANG