Patents by Inventor Chien-Chung Huang

Chien-Chung Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7983051
    Abstract: A dynamic radon access memory (DRAM) module includes a printed circuit board, a number of DRAM units, a number of flash memory units, a number connecting pins and an interface controller. The DRAM units and the flash memory units are distributed on the printed circuit board. The connecting pins are formed at an edge of the printed circuit board. The interface controller is electrically connected to the flash memory units and a portion of the connecting pins, wherein each of the interface controller provides at least one serial interface between the flash memory units and the portion of connecting pins thereby enabling data transmission through the portion of connecting pins in at least one serial mode. The flash memory units integrally constitute a flash disk drive in the DRAM module. Therefore, frequently installation and uninstallation of the flash memory drive can be avoided. A motherboard assembly including the aforementioned DRAM module can be developed.
    Type: Grant
    Filed: April 9, 2008
    Date of Patent: July 19, 2011
    Assignee: Apacer Technology Inc.
    Inventors: Jiunn-Chung Lee, Chien-Chung Huang
  • Publication number: 20110147948
    Abstract: A structure of a porous low-k layer is described, comprising a bottom portion and a body portion of the same atomic composition, wherein the body portion is located on the bottom portion, and the bottom portion has a density higher than the density of the body portion. An interconnect structure is also described, including the above porous low-k layer, and a conductive layer filling up a damascene opening in the porous low-k layer.
    Type: Application
    Filed: March 2, 2011
    Publication date: June 23, 2011
    Applicant: United Microelectronics Corp.
    Inventors: Mei-Ling Chen, Kuo-Chih Lai, Su-Jen Sung, Chien-Chung Huang, Yu-Tsung Lai
  • Publication number: 20110127589
    Abstract: A method of forming a semiconductor structure having a metal gate. Firstly, a semiconductor substrate is provided. Subsequently, at least a gate structure is formed on the semiconductor substrate. Afterwards, a spacer structure is formed to surround the gate structure. Then, an interlayer dielectric is formed. Afterwards, a planarization process is performed for the interlayer dielectric. Then, a portion of the sacrificial layer is removed to form an initial etching depth, such that an opening is formed to expose a portion of the spacer structure. The portion of the spacer structure exposed to the opening is removed so as to broaden the opening. Afterwards, remove the sacrificial layer completely via the opening. Finally, a gate conductive layer is formed to fill the opening.
    Type: Application
    Filed: December 2, 2009
    Publication date: June 2, 2011
    Inventors: Yi-Wei Chen, Nien-Ting Ho, Chien-Chung Huang, Chin-Fu Lin
  • Patent number: 7947565
    Abstract: A method of forming a porous low-k layer is described. A CVD process is conducted to a substrate, wherein a framework precursor and a porogen precursor are supplied. In an end period of the supply of the framework precursor, the value of at least one deposition parameter negatively correlated with the density of the product of the CVD process is decreased.
    Type: Grant
    Filed: February 7, 2007
    Date of Patent: May 24, 2011
    Assignee: United Microelectronics Corp.
    Inventors: Mei-Ling Chen, Kuo-Chih Lai, Su-Jen Sung, Chien-Chung Huang, Yu-Tsung Lai
  • Publication number: 20110060077
    Abstract: In this patent, fibers have been successfully extracted from various natural occurring materials using a series of chemical, biological and mechanical methods. Moreover, these fibers can be conjugated onto certain polymer chains via coupling agent and chemical modification. Consequently, the thermal stability and mechanical properties of the polymers can be dramatically elevated with the incorporation of these fibers. The intended polymers include conventional plastics (epoxy resins, polyesters and polyolefins etc.), rubbers (natural rubbers and thermoplastic rubbers etc.) and biodegradable polymers. Apart from the enhancement of mechanical properties and thermal stability, the incorporation of natural fibers can reduce the production cost of the materials and meet the demand of environmental protection.
    Type: Application
    Filed: September 10, 2009
    Publication date: March 10, 2011
    Inventors: Yeng-Fong Shih, Chien-Chung Huang, Po-Wei Chen
  • Patent number: 7858421
    Abstract: A method of forming a metal-oxide-semiconductor (MOS) transistor device is disclosed. A semiconductor substrate is prepared first, and the semiconductor substrate has agate structure, a source region and a drain region. Subsequently, a stress buffer layer is formed on the semiconductor substrate, and covers the gate structure, the source region and the drain region. Thereafter, a stressed cap layer is formed on the stress buffer layer, and a tensile stress value of the stressed cap layer is higher than a tensile stress value of the stress buffer layer. Since the stress buffer layer can prevent the stressed cap layer from breaking, the MOS transistor device can be covered by a stressed cap layer having an extremely high tensile stress value in the present invention.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: December 28, 2010
    Assignee: United Microelectronics Corp.
    Inventors: Neng-Kuo Chen, Chien-Chung Huang
  • Publication number: 20100304042
    Abstract: A method for forming super high stress layer is provided. First, a substrate is provided. Second, an ammonia-related pretreatment is performed on the substrate. The flow rate of ammonia is not less than s.c.c.m. and the high-frequency source power is set to be not less than 800 W. Later, the super high stress layer is formed on the substrate having undergone the ammonia-related pretreatment.
    Type: Application
    Filed: May 31, 2009
    Publication date: December 2, 2010
    Inventors: Hsiu-Lien Liao, Teng-Chun Tsai, Jei-Ming Chen, Yu-Tuan Tsai, Chien-Chung Huang
  • Publication number: 20100261323
    Abstract: A method of forming a metal-oxide-semiconductor (MOS) transistor device is disclosed. A semiconductor substrate is prepared first, and the semiconductor substrate has agate structure, a source region and a drain region. Subsequently, a stress buffer layer is formed on the semiconductor substrate, and covers the gate structure, the source region and the drain region. Thereafter, a stressed cap layer is formed on the stress buffer layer, and a tensile stress value of the stressed cap layer is higher than a tensile stress value of the stress buffer layer. Since the stress buffer layer can prevent the stressed cap layer from breaking, the MOS transistor device can be covered by a stressed cap layer having an extremely high tensile stress value in the present invention.
    Type: Application
    Filed: June 21, 2010
    Publication date: October 14, 2010
    Inventors: Neng-Kuo Chen, Chien-Chung Huang
  • Publication number: 20100254148
    Abstract: A lamp holder structure having heat dissipation fins comprises a base having a recess with threaded holes for install a luminous lamp set and at least one power line-in for connecting a power line. A plurality of heat dissipation fins arranged in parallel is extended and integrated from a corresponding exterior of the recess and a plurality of heat dissipation diverging fins is extended and integrated from an extreme exterior of the heat dissipation fins. Symmetric protruding plates are connected to predetermined places of the exterior of the base to pivotally connect a positioning plate capable of adjusting angles. A light-transmissive plate further seals the base and symmetric side strips are used to respectively lock symmetric frame borders of the base to position the light-transmissive plate. The corresponding sides of the recess of the base have locking holes for locking symmetric side covers.
    Type: Application
    Filed: July 30, 2009
    Publication date: October 7, 2010
    Inventors: Chien-Chung Huang, Yen-Wei Ho
  • Patent number: 7777284
    Abstract: A method of forming a metal-oxide-semiconductor (MOS) transistor device is disclosed. A semiconductor substrate is prepared first, and the semiconductor substrate has a gate structure, a source region and a drain region. Subsequently, a stress buffer layer is formed on the semiconductor substrate, and covers the gate structure, the source region and the drain region. Thereafter, a stressed cap layer is formed on the stress buffer layer, and a tensile stress value of the stressed cap layer is higher than a tensile stress value of the stress buffer layer. Since the stress buffer layer can prevent the stressed cap layer from breaking, the MOS transistor device can be covered by a stressed cap layer having an extremely high tensile stress value in the present invention.
    Type: Grant
    Filed: May 28, 2007
    Date of Patent: August 17, 2010
    Assignee: United Microelectronics Corp.
    Inventors: Neng-Kuo Chen, Chien-Chung Huang
  • Patent number: 7752479
    Abstract: An exemplary CPU frequency regulating circuit includes a detecting circuit, and a comparing circuit. The detecting circuit receives a PWM signal from a super I/O chipset, and converts the PWM signal to a load voltage responsive to a workload of a CPU. The comparing circuit is coupled to the detecting circuit for receiving the load voltage, and compares the load voltage with a reference voltage, and adjusts a frequency of the CPU according to a result of the comparison.
    Type: Grant
    Filed: November 25, 2006
    Date of Patent: July 6, 2010
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Wang Liang, Han-Chiang Chuang, Hung-Ju Chen, Chien-Chung Huang, Wen-Lung Liang, Chih-Liang Kuo
  • Publication number: 20100072622
    Abstract: A method for forming barrier layers comprises steps of forming a first metal barrier layer covering a first dielectric layer and contacting a conductive layer through a via of the first dielectric layer, forming a barrier layer of metalized materials on the first metal layer, optionally forming a second metal barrier layer on the barrier layer of metalized materials, removing portions of the barrier layer of metalized materials above the via bottom in the first dielectric layer, and leaving the barrier layer of metalized materials remaining on the via sidewall in the first dielectric layer; and forming a second metal layer covering the barrier layer of metalized materials. The accomplished barrier layers will have lower resistivity on the via bottom in the first dielectric layer and they are capable of preventing copper atoms from diffusing into the dielectric layer.
    Type: Application
    Filed: November 29, 2009
    Publication date: March 25, 2010
    Inventors: Yu-Ru YANG, Chien-Chung HUANG
  • Patent number: 7662730
    Abstract: A method for fabricating an ultra-high tensile-stressed nitride film is disclosed. A PECVD process is first performed to deposit a transitional silicon nitride film over a substrate. The transitional silicon nitride film has a first concentration of hydrogen atoms. The transitional silicon nitride film is subjected to UV curing process for reducing the first concentration of hydrogen atoms to a second concentration of hydrogen atoms.
    Type: Grant
    Filed: November 24, 2005
    Date of Patent: February 16, 2010
    Assignee: United Microelectronics Corp.
    Inventors: Neng-Kuo Chen, Teng-Chun Tsai, Chien-Chung Huang, Tsai-Fu Chen, Wen-Han Hung
  • Patent number: 7655987
    Abstract: A metal-oxide-semiconductor (MOS) transistor device is disclosed. The MOS transistor device comprises a semiconductor substrate; a gate structure on the semiconductor substrate; source/drain regions on the semiconductor substrate adjacent to the gate structure; an ultra-high tensile-stressed nitride film having a hydrogen concentration of less than 1E22 atoms/cm3 covering the gate structure and the source/drain regions; and an inter-layer dielectric (ILD) film over the ultra-high tensile-stressed nitride film.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: February 2, 2010
    Assignee: United Microelectronics Corp.
    Inventors: Neng-Kuo Chen, Teng-Chun Tsai, Chien-Chung Huang, Tsai-Fu Chen, Wen-Han Hung
  • Patent number: 7645712
    Abstract: A substrate having at least two metal oxide semiconductor devices of a same conductive type and a gap formed between the two devices is provided. A first stress layer is formed over the substrate to cover the metal-oxide semiconductor devices and the substrate, filling the gap. An etching back process is then performed to remove a portion of the stress material layer inside the gap. A second stress layer and a dielectric layer are sequentially formed on the first stress layer. The first stress layer and the second stress layer provide a same type of stress. A portion of the second stress layer is removed to form a contact opening. A second conductive layer is filled into the contact opening to form a contact.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: January 12, 2010
    Assignee: United Microelectronics Corp.
    Inventors: Neng-Kuo Chen, Teng-Chun Tsai, Chien-Chung Huang
  • Patent number: 7645698
    Abstract: A method for forming barrier layers comprises steps of providing a conductive layer, forming a first dielectric layer on the conductive layer, the first dielectric layer having a via therein, forming a first metal layer covering the first dielectric layer and the conductive layer, forming a layer of metallized materials on the first metal layer, removing the layer of metallized materials above the via bottom in the first dielectric layer, and leaving the layer of metallized materials remaining on a sidewall of the via in the first dielectric layer; and forming a second metal layer covering the layer of metallized materials. The accomplished barrier layers will have lower resistivity in the bottom via of the first dielectric layer and they are capable of preventing copper atoms from diffusing into the dielectric layer.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: January 12, 2010
    Assignee: United Microelectronics Corp.
    Inventors: Yu-Ru Yang, Chien-Chung Huang
  • Patent number: 7647132
    Abstract: A method of problem case packaging handling consists collecting manufacturing problem information from entities associated with fabrication of a semiconductor product; and distributing the manufacturing problem information into problem cases which are stored in a problem database, each problem case representing a respective manufacturing problem and being associated with manufacturing problem information related to that problem case.
    Type: Grant
    Filed: May 5, 2004
    Date of Patent: January 12, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wen-Chang Kuo, Chien-Chung Huang, Tien-Der Chiang, Yi-Lin Huang, Chun Yi Chen, Dan-Ru Wang
  • Publication number: 20100001317
    Abstract: A CMOS transistor and a method for manufacturing the same are disclosed. A semiconductor substrate having at least a PMOS transistor and an NMOS transistor is provided. The source/drain of the PMOS transistor comprises SiGe epitaxial layer. A carbon implantation process is performed to form a carbon-doped layer in the top portion of the source/drain of the PMOS transistor. A silicide layer is formed on the source/drain. A CESL is formed on the PMOS transistor and the NMOS transistor. The formation of the carbon-doped layer is capable of preventing Ge out-diffusion.
    Type: Application
    Filed: July 3, 2008
    Publication date: January 7, 2010
    Inventors: Yi-Wei Chen, Teng-Chun Tsai, Chien-Chung Huang, Jei-Ming Chen, Tsai-Fu Hsiao
  • Patent number: 7642166
    Abstract: A method of manufacturing a MOS transistor device is provided. First, a semiconductor substrate having a gate structure is prepared. The gate structure has two sidewalls and a liner on the sidewalls. Subsequently, a stressed cap layer is formed on the semiconductor substrate, and covers the gate structure and the liner. Next, an activating process is performed. Furthermore, the stressed cap layer is etched to be a salicide block. Afterward, a salicide process is performed to form a silicide layer on the regions that are not covered by the stressed cap layer.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: January 5, 2010
    Assignee: United Microelectronics Corp.
    Inventors: Kun-Hsien Lee, Cheng-Tung Huang, Wen-Han Hung, Shyh-Fann Ting, Li-Shian Jeng, Tzyy-Ming Cheng, Neng-Kuo Chen, Shao-Ta Hsu, Teng-Chun Tsai, Chien-Chung Huang
  • Publication number: 20090298294
    Abstract: A method for clearing native oxide is described. A substrate is provided, including an exposed portion whereon a native oxide layer has been formed. A clearing process is performed to the substrate using nitrogen trifluoride (NF3) and ammonia (NH3) as a reactant gas, wherein the volumetric flow rate of NF3 is greater than that of NH3.
    Type: Application
    Filed: May 30, 2008
    Publication date: December 3, 2009
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Yen-Chu Chen, Teng-Chun Tsai, Chien-Chung Huang, Keng-Jen Liu