Patents by Inventor Chih-An Yu

Chih-An Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240389345
    Abstract: Various embodiments of the present disclosure are directed towards a method of forming a ferroelectric memory device. In the method, a pair of source/drain regions is formed in a substrate. A gate dielectric and a gate electrode are formed over the substrate and between the pair of source/drain regions. A polarization switching structure is formed directly on a top surface of the gate electrode. By arranging the polarization switching structure directly on the gate electrode, smaller pad size can be realized, and more flexible area ratio tuning can be achieved compared to arranging the polarization switching structure under the gate electrode with the aligned sidewall and same lateral dimensions. In addition, since the process of forming gate electrode can endure higher annealing temperatures, such that quality of the ferroelectric structure is better controlled.
    Type: Application
    Filed: July 26, 2024
    Publication date: November 21, 2024
    Inventors: Bo-Feng Young, Chung-Te Lin, Sai-Hooi Yeong, Yu-Ming Lin, Sheng-Chih Lai, Chih-Yu Chang, Han-Jong Chia
  • Publication number: 20240385124
    Abstract: Systems and methods are provided for monitoring wafer bonding and for detecting or determining defects in a wafer bond formed between two semiconductor wafers. A wafer bonding system includes a camera configured to monitor bonding between two semiconductor wafers. Wafer bonding defect detection circuitry receives video data from the camera, and detects a bonding defect based on the received video data.
    Type: Application
    Filed: July 30, 2024
    Publication date: November 21, 2024
    Inventors: Chih-Yu WANG, Hsi-Cheng HSU
  • Publication number: 20240389346
    Abstract: A semiconductor chip including a semiconductor substrate, an interconnect structure and a memory cell array is provided. The semiconductor substrate includes a logic circuit. The interconnect structure is disposed on the semiconductor substrate and electrically connected to the logic circuit, and the interconnect structure includes stacked interlayer dielectric layers and interconnect wirings embedded in the stacked interlayer dielectric layers. The memory cell array is embedded in the stacked interlayer dielectric layers. The memory cell array includes driving transistors and memory devices, and the memory devices are electrically connected the driving transistors through the interconnect wirings.
    Type: Application
    Filed: July 30, 2024
    Publication date: November 21, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Bo-Feng Young, Sai-Hooi Yeong, Yu-Ming Lin, Chih-Yu Chang, Han-Jong Chia
  • Publication number: 20240387578
    Abstract: An image sensor device is disclosed. The image sensor device includes: a substrate having a front surface and a back surface; two adjacent radiation-sensing regions formed in the substrate; and a trench isolation structure extending from the back surface of the substrate into the substrate between the two adjacent radiation-sensing regions. The trench isolation structure includes: a dielectric material; a first film being formed between the dielectric material and the substrate; a second film being formed between the first film and the dielectric material; and a third film being formed between the second film and the dielectric material. An electronegativity of the first film, an electronegativity of the second film and an electronegativity of the third film are different from each other.
    Type: Application
    Filed: July 30, 2024
    Publication date: November 21, 2024
    Inventors: CHIH-YU LAI, MIN-YING TSAI, YEUR-LUEN TU, HAI-DANG TRINH, CHENG-YUAN TSAI
  • Patent number: 12150308
    Abstract: A semiconductor chip including a semiconductor substrate, an interconnect structure and a memory cell array is provided. The semiconductor substrate includes a logic circuit. The interconnect structure is disposed on the semiconductor substrate and electrically connected to the logic circuit, and the interconnect structure includes stacked interlayer dielectric layers and interconnect wirings embedded in the stacked interlayer dielectric layers. The memory cell array is embedded in the stacked interlayer dielectric layers. The memory cell array includes driving transistors and memory devices, and the memory devices are electrically connected the driving transistors through the interconnect wirings.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: November 19, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Bo-Feng Young, Sai-Hooi Yeong, Yu-Ming Lin, Chih-Yu Chang, Han-Jong Chia
  • Patent number: 12150311
    Abstract: Various embodiments of the present disclosure are directed towards a method of forming a ferroelectric memory device. In the method, a pair of source/drain regions is formed in a substrate. A gate dielectric and a gate electrode are formed over the substrate and between the pair of source/drain regions. A polarization switching structure is formed directly on a top surface of the gate electrode. By arranging the polarization switching structure directly on the gate electrode, smaller pad size can be realized, and more flexible area ratio tuning can be achieved compared to arranging the polarization switching structure under the gate electrode with the aligned sidewall and same lateral dimensions. In addition, since the process of forming gate electrode can endure higher annealing temperatures, such that quality of the ferroelectric structure is better controlled.
    Type: Grant
    Filed: August 3, 2023
    Date of Patent: November 19, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Bo-Feng Young, Chung-Te Lin, Sai-Hooi Yeong, Yu-Ming Lin, Sheng-Chih Lai, Chih-Yu Chang, Han-Jong Chia
  • Patent number: 12148843
    Abstract: A semiconductor device includes a silicon germanium channel, a germanium-free interfacial layer, a high-k dielectric layer, and a metal gate electrode. The silicon germanium channel is over a substrate. The germanium-free interfacial layer is over the silicon germanium channel. The germanium-free interfacial layer is nitridated. The high-k dielectric layer is over the germanium-free interfacial layer. The metal gate electrode is over the high-k dielectric layer.
    Type: Grant
    Filed: May 12, 2023
    Date of Patent: November 19, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Yu Chang, Hsiang-Pi Chang, Zi-Wei Fang
  • Publication number: 20240379398
    Abstract: In some implementations, a control device may determine a spacing measurement in a first dimension between a wafer on a susceptor and a pre-heat ring of a semiconductor processing tool and/or a gapping measurement in a second dimension between the wafer and the pre-heat ring, using one or more images captured in situ during a process by at least one optical sensor. Accordingly, the control device may generate a command based on a setting associated with the process being performed by the semiconductor processing tool and the spacing measurement and/or the gapping measurement. The control device may provide the command to at least one motor to move the susceptor.
    Type: Application
    Filed: July 25, 2024
    Publication date: November 14, 2024
    Inventors: Yan-Chun LIU, Yii-Chi LIN, Shahaji B. MORE, Chih-Yu MA, Sheng-Jang LIU, Shih-Chieh CHANG, Ching-Lun LAI
  • Publication number: 20240381654
    Abstract: The present disclosure, in some embodiments, relates to an integrated chip structure. The integrated chip structure includes a multi-layer stack disposed on a substrate and having a plurality of conductive layers interleaved between a plurality of dielectric layers. A channel layer is arranged along a side of the multi-layer stack. A ferroelectric material is arranged between the channel layer and the side of the multi-layer stack. A plurality of oxygen scavenging layers are respectively arranged between the ferroelectric material and sidewalls of the plurality of conductive layers. The plurality of oxygen scavenger layers are entirely confined below the plurality of dielectric layers.
    Type: Application
    Filed: July 24, 2024
    Publication date: November 14, 2024
    Inventors: Chun-Chieh Lu, Sai-Hooi Yeong, Bo-Feng Young, Yu-Ming Lin, Chih-Yu Chang
  • Publication number: 20240381608
    Abstract: A transistor includes a gate structure that has a first gate dielectric layer and a second gate dielectric layer. The first gate dielectric layer is disposed over the substrate. The first gate dielectric layer contains a first type of dielectric material that has a first dielectric constant. The second gate dielectric layer is disposed over the first gate dielectric layer. The second gate dielectric layer contains a second type of dielectric material that has a second dielectric constant. The second dielectric constant is greater than the first dielectric constant. The first dielectric constant and the second dielectric constant are each greater than a dielectric constant of silicon oxide.
    Type: Application
    Filed: July 23, 2024
    Publication date: November 14, 2024
    Inventors: Chih-Yu Hsu, Jian-Hao Chen, Chia-Wei Chen, Shan-Mei Liao, Hui-Chi Chen, Yu-Chia Liang, Shih-Hao Lin, Kuei-Lun Lin, Kuo-Feng Yu, Feng-Cheng Yang, Yen-Ming Chen
  • Publication number: 20240379366
    Abstract: In an embodiment, a method includes: depositing a gate dielectric layer on a first fin and a second fin, the first fin and the second fin extending away from a substrate in a first direction, a distance between the first fin and the second fin decreasing along the first direction; depositing a sacrificial layer on the gate dielectric layer by exposing the gate dielectric layer to a self-limiting source precursor and a self-reacting source precursor, the self-limiting source precursor reacting to form an initial layer of a material of the sacrificial layer, the self-reacting source precursor reacting to form a main layer of the material of the sacrificial layer; annealing the gate dielectric layer while the sacrificial layer covers the gate dielectric layer; after annealing the gate dielectric layer, removing the sacrificial layer; and after removing the sacrificial layer, forming a gate electrode layer on the gate dielectric layer.
    Type: Application
    Filed: July 22, 2024
    Publication date: November 14, 2024
    Inventors: Kuei-Lun Lin, Chia-Wei Hsu, Xiong-Fei Yu, Chi On Chui, Chih-Yu Hsu, Jian-Hao Chen
  • Publication number: 20240379365
    Abstract: A method includes forming a first gate dielectric and a second gate dielectric over a first semiconductor region and a second semiconductor region, respectively, depositing a lanthanum-containing layer including a first portion and a second portion overlapping the first gate dielectric and the second gate dielectric, respectively, and depositing a hard mask including a first portion and a second portion overlapping the first portion and the second portion of the lanthanum-containing layer, respectively. The hard mask is free from both of titanium and tantalum. The method further includes forming a patterned etching mask to cover the first portion of the hard mask, with the second portion of the hard mask being exposed, removing the second portion of the hard mask and the second portion of the lanthanum-containing layer, and performing an anneal to drive lanthanum in the first portion of the lanthanum-containing layer into the first gate dielectric.
    Type: Application
    Filed: July 22, 2024
    Publication date: November 14, 2024
    Inventors: Kuo-Feng Yu, Chun Hsiung Tsai, Jian-Hao Chen, Hoong Shing Wong, Chih-Yu Hsu
  • Patent number: 12142657
    Abstract: A semiconductor device and related method for forming a gate structure. In some embodiments, a semiconductor device includes a fin extending from a substrate. In some cases, the fin includes a plurality of semiconductor channel layers. In some examples, the semiconductor device further includes a gate dielectric surrounding each of the plurality of semiconductor channel layers. In some embodiments, a first thickness of the gate dielectric disposed on a top surface of a topmost semiconductor channel layer of the plurality of semiconductor channel layers is greater than a second thickness of the gate dielectric disposed on a surface of another semiconductor channel layer disposed beneath the topmost semiconductor channel layer.
    Type: Grant
    Filed: April 13, 2022
    Date of Patent: November 12, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuo-Feng Yu, Jiao-Hao Chen, Chih-Yu Hsu, Chih-Wei Lee, Chien-Yuan Chen
  • Publication number: 20240371412
    Abstract: A semiconductor device includes a first memory cell in a 4CPP architecture; a second memory cell formed in the 4CPP architecture and physically disposed next to the first memory cell along a first lateral direction; a first word line extending along the first lateral direction and operatively coupled to the first memory cell; a second word line extending along the first lateral direction and operatively coupled to the first memory cell; a third word line extending along the first lateral direction and operatively coupled to the second memory cell; a fourth word line extending along the first lateral direction and operatively coupled to the second memory cell; a first bit line extending along a second lateral direction perpendicular to the first lateral direction and operatively coupled to the first memory cell; and a second bit line extending along the second lateral direction and operatively coupled to the second memory cell.
    Type: Application
    Filed: August 22, 2023
    Publication date: November 7, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hidehiro Fujiwara, Chih-Yu Lin, Yuichiro Ishii, Makoto Yabuuchi, Masaya Hamada, Koji Nii, Yen-Huei Chen
  • Publication number: 20240371753
    Abstract: An integrated circuit (IC) structure includes a first transistor including a first gate structure adjacent to first and second portions of a first active area positioned in a semiconductor substrate, a second transistor including a second gate structure adjacent to the second portion of the first active area and a third portion of the first active area, an isolation structure overlying the second portion of the first active area, and first through third metal-like defined (MD) segments overlying the respective first through third portions of the first active area. The first and third MD segments are electrically connected to the respective first and third portions of the first active area, and the second MD segment is electrically isolated from the second portion of the first active area by the isolation structure.
    Type: Application
    Filed: July 12, 2024
    Publication date: November 7, 2024
    Inventors: Chi-Yu LU, Yi-Hsun CHIU, Chih-Liang CHEN, Chih-Yu LAI, Shang-Hsuan CHIU
  • Patent number: 12137548
    Abstract: A memory device includes active regions and gate structures, each of the gate structures is electrically coupled to a first portion of a corresponding active region of the active regions. The memory device includes contact-to-transistor-component structures (MD structures), each of the MD structures is over a second portion of a corresponding active region, and a first MD structure is between adjacent gate structures. The memory device includes via-to-gate/MD (VGD) structures, each of the VGD structures is over to a corresponding gate electrode and MD structure. The memory device includes conductive segments, each of the conductive segments is over and electrically coupled to a corresponding VGD structure. The memory device includes buried contact-to-transistor-component structures (BVD) structures, each of the BVD structures is under a third portion of a corresponding active region.
    Type: Grant
    Filed: January 18, 2023
    Date of Patent: November 5, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY
    Inventors: Hidehiro Fujiwara, Chih-Yu Lin, Yen-Huei Chen, Wei-Chang Zhao, Yi-Hsin Nien
  • Patent number: 12136659
    Abstract: Negative capacitance field-effect transistor (NCFET) and ferroelectric field-effect transistor (FE-FET) devices and methods of forming are provided. The gate dielectric stack includes a ferroelectric gate dielectric layer. An amorphous high-k dielectric layer and a dopant-source layer are deposited sequentially followed by a post-deposition anneal (PDA). The PDA converts the amorphous high-k layer to a polycrystalline high-k film with crystalline grains stabilized by the dopants in a crystal phase in which the high-k dielectric is a ferroelectric high-k dielectric. After the PDA, the remnant dopant-source layer may be removed. A gate electrode is formed over remnant dopant-source layer (if present) and the polycrystalline high-k film.
    Type: Grant
    Filed: July 31, 2023
    Date of Patent: November 5, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Te-Yang Lai, Chun-Yen Peng, Chih-Yu Chang, Bo-Feng Young, Sai-Hooi Yeong, Chi On Chui
  • Publication number: 20240363616
    Abstract: A memory array includes a first memory cell configured to store data, a second memory cell configured to store data and a bit line extending along the first direction, and being over the first memory cell and the second memory cell. The first memory cell and the second memory cell are arranged along a first direction in a first column of memory cells. The bit line includes a first conductor extending in the first direction and being in a first conductive layer, and a second conductor extending in the first direction and being in a second conductive layer different from the first conductive layer.
    Type: Application
    Filed: July 10, 2024
    Publication date: October 31, 2024
    Inventors: Hidehiro FUJIWARA, Sahil Preet SINGH, Chih-Yu LIN, Hsien-Yu PAN, Yen-Huei CHEN, Hung-Jen LIAO
  • Publication number: 20240363658
    Abstract: Disclosed is a CMOS image sensor with global shutters and a method for fabricating the CMOS image sensor. In one embodiment, a semiconductor device, includes: a light-sensing region; a charge-storage region; a light-shielding structure; and at least one via contact; wherein the charge-storage region is spatially configured adjacent to the light-sensing region in a lateral direction, wherein the light-shielding structure is configured over the charge-storage region in a vertical direction so as to prevent incident light leaking from the light-sensing region to the signal-processing region, wherein the light-shielding structure is configured in an interlayer dielectric (ILD) layer, and wherein the light-shielding structure is simultaneously formed with the at least one via contact.
    Type: Application
    Filed: July 11, 2024
    Publication date: October 31, 2024
    Inventors: Chih-Yu TSENG, Ming-Hsien CHEN
  • Publication number: 20240363671
    Abstract: A method includes performing an anisotropic etching on a semiconductor substrate to form a trench. The trench has vertical sidewalls and a rounded bottom connected to the vertical sidewalls. A damage removal step is performed to remove a surface layer of the semiconductor substrate, with the surface layer exposed to the trench. The rounded bottom of the trench is etched to form a slant straight bottom surface. The trench is filled to form a trench isolation region in the trench.
    Type: Application
    Filed: July 10, 2024
    Publication date: October 31, 2024
    Inventors: Cheng-Hsien Chou, Chih-Yu Lai, Shih Pei Chou, Yen-Ting Chiang, Hsiao-Hui Tseng, Min-Ying Tsai