Patents by Inventor Chih-Chien Chang

Chih-Chien Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230268437
    Abstract: A power device includes a substrate, an ion well in the substrate, a body region in the ion well, a source doped region in the body region, a drain doped region in the ion well, and gates on the substrate between the source doped region and the drain doped region. The gates include a first gate adjacent to the source doped region, a second gate adjacent to the drain doped region, and a stacked gate structure between the first gate and the second gate.
    Type: Application
    Filed: March 24, 2022
    Publication date: August 24, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Chien Chang, Shen-De Wang, Cheng-Hua Yang, LINGGANG FANG, JIANJUN YANG, Wei Ta
  • Publication number: 20230215946
    Abstract: A semiconductor device includes a semiconductor substrate, a gate structure, a source region, a drain region, a first oxide layer, a field plate, and a second oxide layer. The gate structure is disposed on the semiconductor substrate. The source region and the drain region are disposed in the semiconductor substrate and located at two opposite sides of the gate structure respectively. The first oxide layer includes a first portion disposed between the gate structure and the semiconductor substrate and a second portion disposed between the gate structure and the drain region. The field plate is partly disposed above the gate structure and partly disposed above the second portion of the first oxide layer. The second oxide layer includes a first portion disposed between the field plate and the gate structure and a second portion disposed between the field plate and the second portion of the first oxide layer.
    Type: Application
    Filed: March 13, 2023
    Publication date: July 6, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Cheng-Hua Yang, Chih-Chien Chang, Shen-De Wang
  • Patent number: 11631766
    Abstract: A semiconductor device includes a semiconductor substrate, a gate structure, a source region, a drain region, a first oxide layer, a field plate, and a second oxide layer. The gate structure is disposed on the semiconductor substrate. The source region and the drain region are disposed in the semiconductor substrate and located at two opposite sides of the gate structure respectively. The first oxide layer includes a first portion disposed between the gate structure and the semiconductor substrate and a second portion disposed between the gate structure and the drain region. The field plate is partly disposed above the gate structure and partly disposed above the second portion of the first oxide layer. The second oxide layer includes a first portion disposed between the field plate and the gate structure and a second portion disposed between the field plate and the second portion of the first oxide layer.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: April 18, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Cheng-Hua Yang, Chih-Chien Chang, Shen-De Wang
  • Publication number: 20220310839
    Abstract: A semiconductor device includes a semiconductor substrate, a gate structure, a source region, a drain region, a first oxide layer, a field plate, and a second oxide layer. The gate structure is disposed on the semiconductor substrate. The source region and the drain region are disposed in the semiconductor substrate and located at two opposite sides of the gate structure respectively. The first oxide layer includes a first portion disposed between the gate structure and the semiconductor substrate and a second portion disposed between the gate structure and the drain region. The field plate is partly disposed above the gate structure and partly disposed above the second portion of the first oxide layer. The second oxide layer includes a first portion disposed between the field plate and the gate structure and a second portion disposed between the field plate and the second portion of the first oxide layer.
    Type: Application
    Filed: April 12, 2021
    Publication date: September 29, 2022
    Inventors: Cheng-Hua Yang, Chih-Chien Chang, Shen-De Wang
  • Patent number: 11146281
    Abstract: A multi-stage switched capacitor circuit and an operation method thereof are provided. The multi-stage switched capacitor circuit includes a first operational stage, a second operational stage and a third operational stage that are serially connected in order. Each operational stage operates in a sample phase or a hold phase and generates a detection signal indicating an end of the hold phase. The operation method of the multi-stage switched capacitor circuit includes: controlling the second operational stage to operate in the hold phase when the detection signal of the first operational stage indicates the end of the hold phase of the first operational stage, and the detection signal of the third operational stage indicates the end of the hold phase of the third operational stage.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: October 12, 2021
    Assignee: REALTEK SEMICONDUCTOR CORPORATION
    Inventors: Wei-Chou Wang, Chih-Chien Chang, Shih-Hsiung Huang
  • Publication number: 20210203347
    Abstract: A multi-stage switched capacitor circuit and an operation method thereof are provided. The multi-stage switched capacitor circuit includes a first operational stage, a second operational stage and a third operational stage that are serially connected in order. Each operational stage operates in a sample phase or a hold phase and generates a detection signal indicating an end of the hold phase. The operation method of the multi-stage switched capacitor circuit includes: controlling the second operational stage to operate in the hold phase when the detection signal of the first operational stage indicates the end of the hold phase of the first operational stage, and the detection signal of the third operational stage indicates the end of the hold phase of the third operational stage.
    Type: Application
    Filed: November 13, 2020
    Publication date: July 1, 2021
    Inventors: WEI-CHOU WANG, CHIH-CHIEN CHANG, SHIH-HSIUNG HUANG
  • Patent number: 10651183
    Abstract: A manufacturing method of a semiconductor device includes: providing a substrate having memory and high voltage regions; sequentially forming a floating gate layer and a hard mask layer on the substrate; patterning the hard mask layer to form a first opening exposing a portion of the floating gate layer in the range of the memory region; patterning the hard mask layer and the floating gate layer to form a second opening overlapped with the high voltage region; performing a first thermal growth process to simultaneously form a first oxide structure on the portion of the floating gate layer exposed by the first opening, and to form a second oxide structure on a portion of the substrate overlapped with the second opening; removing the hard mask layer; and patterning the floating gate layer by using the first oxide structure as a mask.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: May 12, 2020
    Assignee: United Microelectronics Corp.
    Inventors: Jianjun Yang, Cheng-Hua Yang, Fan-Chi Meng, Chih-Chien Chang, Shen-De Wang
  • Patent number: 10332884
    Abstract: A method of manufacturing FinFET semiconductor devices in memory regions and logic regions includes the steps of forming a first gate material layer on a substrate and fins, patterning the first gate material layer to form a control gate, forming a second gate material layer on the substrate and fins, performing an etch process to the cell region so that the second gate material layer in the cell region is lower than the second gate material layer in the peripheral region, patterning the second gate material layer to form a select gate in the cell region and a dummy gate in the logic region respectively.
    Type: Grant
    Filed: November 2, 2017
    Date of Patent: June 25, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Liang Yi, Che-Jung Hsu, Yu-Cheng Tung, Jianjun Yang, Yuan-Hsiang Chang, Chih-Chien Chang, Weichang Liu, Shen-De Wang, Kok Wun Tan
  • Publication number: 20190131302
    Abstract: A method of manufacturing FinFET semiconductor devices in memory regions and logic regions includes the steps of forming a first gate material layer on a substrate and fins, patterning the first gate material layer to form a control gate, forming a second gate material layer on the substrate and fins, performing an etch process to the cell region so that the second gate material layer in the cell region is lower than the second gate material layer in the peripheral region, patterning the second gate material layer to form a select gate in the cell region and a dummy gate in the logic region respectively.
    Type: Application
    Filed: November 2, 2017
    Publication date: May 2, 2019
    Inventors: Liang Yi, Che-Jung Hsu, Yu-Cheng Tung, JIANJUN YANG, Yuan-Hsiang Chang, Chih-Chien Chang, WEICHANG LIU, Shen-De Wang, KOK WUN TAN
  • Patent number: 10192874
    Abstract: A nonvolatile memory cell includes a substrate having a drain region, a source region, and a channel region between the drain region and the source region. A floating gate and a select gate are disposed on the channel region. A control gate is disposed on the floating gate. An erase gate is disposed on the source region. The erase gate includes a lower end portion that extends into a major surface of the substrate.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: January 29, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Liang Yi, Chih-Chien Chang, Shen-De Wang
  • Publication number: 20180366478
    Abstract: A nonvolatile memory cell includes a substrate having a drain region, a source region, and a channel region between the drain region and the source region. A floating gate and a select gate are disposed on the channel region. A control gate is disposed on the floating gate. An erase gate is disposed on the source region. The erase gate includes a lower end portion that extends into a major surface of the substrate.
    Type: Application
    Filed: June 19, 2017
    Publication date: December 20, 2018
    Inventors: Liang Yi, Chih-Chien Chang, Shen-De Wang
  • Publication number: 20180342394
    Abstract: A manufacturing method of a semiconductor structure includes the following steps. A first polysilicon layer is formed on a substrate. A planarization process to the first polysilicon layer is performed. A first etching back process to the first polysilicon layer is performed after the planarization process. A second etching back process to the first polysilicon layer is performed after the first etching back process. A first wet clean process to the first polysilicon layer is performed after the first etching back process and before the second etching back process.
    Type: Application
    Filed: May 24, 2017
    Publication date: November 29, 2018
    Inventors: Zhi Qiang Mu, Chow Yee Lim, Hui Yang, YONG BIN FAN, JIANJUN YANG, Chih-Chien Chang
  • Patent number: 10141194
    Abstract: A manufacturing method of a semiconductor structure includes the following steps. A first polysilicon layer is formed on a substrate. A planarization process to the first polysilicon layer is performed. A first etching back process to the first polysilicon layer is performed after the planarization process. A second etching back process to the first polysilicon layer is performed after the first etching back process. A first wet clean process to the first polysilicon layer is performed after the first etching back process and before the second etching back process.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: November 27, 2018
    Assignee: UNITED MICROELETRONICS CORP.
    Inventors: Zhi Qiang Mu, Chow Yee Lim, Hui Yang, Yong Bin Fan, Jianjun Yang, Chih-Chien Chang
  • Patent number: 10083950
    Abstract: A die stacking method is provided. The die stacking method includes executing a manufacturing recipe, and loading an interposer-die mapping file according to the manufacturing recipe. The interposer-die mapping file corresponds to an interposer wafer including interposer dies. The die stacking method also includes loading a combination setting data according to the interposer-die mapping file, and loading a top die number and a top-die ID code of a top-die mapping file according to the combination setting data and the interposer-die mapping file. The top-die ID code corresponds to a top wafer including top dies, and the top die number corresponds to one of the top dies. The die stacking method also includes disposing the one of the top dies of the top wafer on one of the interposer dies of the interposer wafer.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: September 25, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Larry Jann, Chih-Chien Chang, Po-Wen Chuang, Ming-I Chiu, Chang-Hsi Lin, Chih-Chan Li, Yi-Ting Hu
  • Patent number: 10067521
    Abstract: A low dropout regulator includes a PMOS power transistor, a feedback network, an error amplifier and an active enhanced PSRR unit. The PMOS power transistor has a first end coupled to an input voltage, and a second end coupled to a load and the feedback network. The error amplifier receives a feedback signal generated from the feedback network, compares the feedback signal with a reference voltage to generate a difference value, and amplifies the difference value to generate an error signal. The active enhanced PSRR unit has one end coupled to the first end, and another end coupled to a control end of the PMOS power transistor and the error amplifier, detects an input voltage of the first end, and correspondingly adjusts a voltage of the control end to stabilize a voltage between the control end and the first end according to a variation of the input voltage.
    Type: Grant
    Filed: November 7, 2016
    Date of Patent: September 4, 2018
    Assignee: Realtek Semiconductor Corp.
    Inventors: Shih-Wei Wang, Chih-Chien Chang, Hsiang-An Yang
  • Patent number: 10020385
    Abstract: The present invention provides a memory cell, which includes a substrate, a gate dielectric layer, a patterned material layer, a selection gate and a control gate. The gate dielectric layer is disposed on the substrate. The patterned material layer is disposed on the substrate, wherein the patterned material layer comprises a vertical portion and a horizontal portion. The selection gate is disposed on the gate dielectric layer and atone side of the vertical portion of the patterned material layer. The control gate is disposed on the horizontal portion of the patterned material layer and at another side of the vertical portion, wherein the vertical portion protrudes over a top of the selection gate. The present invention further provides another embodiment of a memory cell and manufacturing methods thereof.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: July 10, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Yi-Shan Chiu, Shen-De Wang, Zhen Chen, Yuan-Hsiang Chang, Chih-Chien Chang, Jianjun Yang, Wei Ta
  • Publication number: 20170293313
    Abstract: A low dropout regulator includes a PMOS power transistor, a feedback network, an error amplifier and an active enhanced PSRR unit. The PMOS power transistor has a first end coupled to an input voltage, and a second end coupled to a load and the feedback network. The error amplifier receives a feedback signal generated from the feedback network, compares the feedback signal with a reference voltage to generate a difference value, and amplifies the difference value to generate an error signal. The active enhanced PSRR unit has one end coupled to the first end, and another end coupled to a control end of the PMOS power transistor and the error amplifier, detects an input voltage of the first end, and correspondingly adjusts a voltage of the control end to stabilize a voltage between the control end and the first end according to a variation of the input voltage.
    Type: Application
    Filed: November 7, 2016
    Publication date: October 12, 2017
    Inventors: SHIH-WEI WANG, CHIH-CHIEN CHANG, HSIANG-AN YANG
  • Publication number: 20170262006
    Abstract: A regulator includes a driving circuit, an amplifying circuit and an overvoltage protection circuit. The driving circuit is configured to receive an input voltage and provide an output voltage through an output terminal. The amplifying circuit is configured to control the driving circuit according to the output voltage. The overvoltage protection circuit is configured to conduct a first current from the output terminal of the overprotection circuit to a ground terminal. When the overvoltage protection circuit detects that a voltage level of a node coupled to the driving circuit is increased, the overvoltage protection circuit conducts a second current from the output terminal of the overprotection circuit to the ground terminal to lower the output voltage, in which the second current is larger than the first current.
    Type: Application
    Filed: May 31, 2016
    Publication date: September 14, 2017
    Inventors: Shih-Wei WANG, Cheng-Cheng YEN, Chih-Chien CHANG
  • Patent number: 9760105
    Abstract: A regulator includes a driving circuit, an amplifying circuit and an overvoltage protection circuit. The driving circuit is configured to receive an input voltage and provide an output voltage through an output terminal. The amplifying circuit is configured to control the driving circuit according to the output voltage. The overvoltage protection circuit is configured to conduct a first current from the output terminal of the overprotection circuit to a ground terminal. When the overvoltage protection circuit detects that a voltage level of a node coupled to the driving circuit is increased, the overvoltage protection circuit conducts a second current from the output terminal of the overprotection circuit to the ground terminal to lower the output voltage, in which the second current is larger than the first current.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: September 12, 2017
    Assignee: REALTEK SEMICONDUCTOR CORPORATION
    Inventors: Shih-Wei Wang, Cheng-Cheng Yen, Chih-Chien Chang
  • Patent number: 9740223
    Abstract: A regulator includes a driver circuit, an amplifier circuit, a first current source circuit and a second current source circuit. The driver circuit is configured to receive an input voltage and provide an output voltage. The first current source circuit is configured to provide a first current to the amplifier circuit. The second current source circuit is configured to provide a second current to the amplifier circuit according to the output voltage if the output voltage deviates from a predetermined voltage. The amplifier circuit is configured to control the driver circuit according to the output voltage and a third current, in which the third current is a sum of the first current and the second current.
    Type: Grant
    Filed: July 4, 2016
    Date of Patent: August 22, 2017
    Assignee: REALTEK SEMICONDUCTOR CORPORATION
    Inventors: Shih-Wei Wang, Chih-Chien Chang, Hsiang-An Yang