Patents by Inventor Chih-Hao Wang

Chih-Hao Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240250017
    Abstract: A semiconductor device structure, along with methods of forming such, are described. The semiconductor device structure includes a device, a first dielectric material disposed over the device, and an opening is formed in the first dielectric material. The semiconductor device structure further includes a conductive structure disposed in the opening, and the conductive structure includes a first sidewall. The semiconductor device structure further includes a surrounding structure disposed in the opening, and the surrounding structure surrounds the first sidewall of the conductive structure. The surrounding structure includes a first spacer layer and a second spacer layer adjacent the first spacer layer. The first spacer layer is separated from the second spacer layer by an air gap.
    Type: Application
    Filed: March 14, 2024
    Publication date: July 25, 2024
    Inventors: Lin-Yu HUANG, Li-Zhen YU, Chia-Hao CHANG, Cheng-Chi CHUANG, Kuan-Lun CHENG, Chih-Hao WANG
  • Publication number: 20240250134
    Abstract: A method includes forming a gate electrode and a source/drain region over a bulk portion of a semiconductor substrate, forming a cut-metal-gate region to separate the gate electrode into a first portion and a second portion, forming a source/drain contact plug overlapping and electrically connected to the source/drain region, forming a first contact rail overlapping a portion of the cut-metal-gate region, removing the bulk portion of the semiconductor substrate, and etching the cut-metal-gate region to form a trench. A surface of the first contact rail is revealed to the trench. A via rail is formed in the trench, and the via rail is electrically connected to the source/drain region through the first contact rail.
    Type: Application
    Filed: May 8, 2023
    Publication date: July 25, 2024
    Inventors: Chun-Yuan Chen, Cheng-Chi Chuang, Chih-Hao Wang, Huan-Chieh Su, Kuo-Nan Yang
  • Publication number: 20240250032
    Abstract: In an embodiment, a device includes: a lower source/drain region; an upper source/drain region; a nanostructure between the upper source/drain region and the lower source/drain region; a gate structure extending into a sidewall of the nanostructure, the gate structure including a gate dielectric and a gate electrode, an outer sidewall of the gate electrode being aligned with an outer sidewall of the gate dielectric; and a gate contact adjacent the gate structure, the gate contact extending along the outer sidewall of the gate electrode and the outer sidewall of the gate dielectric.
    Type: Application
    Filed: April 27, 2023
    Publication date: July 25, 2024
    Inventors: Kuo-Cheng Chiang, Chih-Hao Wang, Guan-Lin Chen, Yu-Xuan Huang, Jin Cai
  • Publication number: 20240250123
    Abstract: A method of forming a semiconductor device includes forming semiconductor strips protruding above a substrate and isolation regions between the semiconductor strips; forming hybrid fins on the isolation regions, the hybrid fins comprising dielectric fins and dielectric structures over the dielectric fins; forming a dummy gate structure over the semiconductor strip; forming source/drain regions over the semiconductor strips and on opposing sides of the dummy gate structure; forming nanowires under the dummy gate structure, where the nanowires are over and aligned with respective semiconductor strips, and the source/drain regions are at opposing ends of the nanowires, where the hybrid fins extend further from the substrate than the nanowires; after forming the nanowires, reducing widths of center portions of the hybrid fins while keeping widths of end portions of the hybrid fins unchanged, and forming an electrically conductive material around the nanowires.
    Type: Application
    Filed: February 29, 2024
    Publication date: July 25, 2024
    Inventors: Kuo-Cheng Chiang, Huan-Chieh Su, Shi Ning Ju, Kuan-Ting Pan, Chih-Hao Wang
  • Publication number: 20240250141
    Abstract: Semiconductor device and the manufacturing method thereof are disclosed. An exemplary semiconductor device comprises a dielectric layer formed over a conductive feature; a semiconductor stack formed over the dielectric layer, wherein the semiconductor stack including semiconductor layers stacked up and separated from each other; a first metal gate structure and a second metal gate structure formed over a channel region of the semiconductor stack, wherein the first metal gate structure and the second metal gate structure wrap each of the semiconductor layers of the semiconductor stack; and a first epitaxial feature disposed between the first metal gate structure and the second metal gate structure over a first source/drain region of the semiconductor stack, wherein the first epitaxial feature extends through the dielectric layer and contacts the conductive feature.
    Type: Application
    Filed: February 27, 2024
    Publication date: July 25, 2024
    Inventors: Chih-Chao Chou, Kuo-Cheng Chiang, Shi Ning Ju, Wen-Ting Lan, Chih-Hao Wang
  • Publication number: 20240250151
    Abstract: Semiconductor devices and methods of forming the same are provided. A semiconductor device according to one embodiment includes an active region including a channel region and a source/drain region adjacent the channel region, a gate structure over the channel region of the active region, a source/drain contact over the source/drain region, a dielectric feature over the gate structure and including a lower portion adjacent the gate structure and an upper portion away from the gate structure, and an air gap disposed between the gate structure and the source/drain contact. A first width of the upper portion of the dielectric feature along a first direction is greater than a second width of the lower portion of the dielectric feature along the first direction. The air gap is disposed below the upper portion of the dielectric feature.
    Type: Application
    Filed: April 5, 2024
    Publication date: July 25, 2024
    Inventors: Chia-Hao Chang, Lin-Yu Huang, Sheng-Tsung Wang, Cheng-Chi Chuang, Yu-Ming Lin, Chih-Hao Wang
  • Patent number: 12046507
    Abstract: A semiconductor device structure, along with methods of forming such, are described. The semiconductor device structure includes a device, a conductive structure disposed over the device, and the conductive structure includes a sidewall having a first portion and a second portion. The semiconductor device structure further includes a first spacer layer including a third portion and a fourth portion, the third portion surrounds the first portion of the sidewall, and the fourth portion is disposed on the conductive structure. The semiconductor device structure further includes a first dielectric material surrounding the third portion, and an air gap is formed between the first dielectric material and the third portion of the first spacer layer. The first dielectric material includes a first material different than a second material of the first spacer layer, and the first dielectric material is substantially coplanar with the fourth portion of the first spacer layer.
    Type: Grant
    Filed: July 27, 2022
    Date of Patent: July 23, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Lin-Yu Huang, Li-Zhen Yu, Chia-Hao Chang, Cheng-Chi Chuang, Kuan-Lun Cheng, Chih-Hao Wang
  • Patent number: 12046516
    Abstract: Semiconductor devices and methods of forming the same are provided. A semiconductor device according to the present disclosure includes channel members over a backside dielectric feature, a gate structure wrapping around the channel members, an epitaxial feature abutting the channel members, a first isolation feature disposed on a first sidewall of the gate structure and extending through the backside dielectric feature, and a second isolation feature disposed on a second sidewall of the gate structure and extending through the backside dielectric feature. A top surface of the first isolation feature is above a top surface of the second isolation feature.
    Type: Grant
    Filed: April 3, 2023
    Date of Patent: July 23, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Huan-Chieh Su, Chun-Yuan Chen, Lo-Heng Chang, Li-Zhen Yu, Cheng-Chi Chuang, Chih-Hao Wang, Kuan-Lun Cheng
  • Patent number: 12046644
    Abstract: Semiconductor devices and methods of forming the same are provided. A semiconductor device according to the present disclosure include a source feature disposed over a backside source contact, a drain feature disposed over a backside dielectric layer, a plurality of channel members each extending between the source feature and the drain feature, and a gate structure wrapping around each of the plurality of channel members and disposed over the backside dielectric layer. The backside source contact is spaced apart from the backside dielectric layer by a gap.
    Type: Grant
    Filed: July 1, 2022
    Date of Patent: July 23, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Li-Zhen Yu, Lin-Yu Huang, Kuan-Lun Cheng, Chih-Hao Wang
  • Publication number: 20240243178
    Abstract: A semiconductor device according to the present disclosure includes a source feature and a drain feature, a plurality of semiconductor nanostructures extending between the source feature and the drain feature, a gate structure wrapping around each of the plurality of semiconductor nanostructures, a bottom dielectric layer over the gate structure and the drain feature, a backside power rail disposed over the bottom dielectric layer, and a backside source contact disposed between the source feature and the backside power rail. The backside source contact extends through the bottom dielectric layer.
    Type: Application
    Filed: April 1, 2024
    Publication date: July 18, 2024
    Inventors: Lung-Kun Chu, Mao-Lin Huang, Chung-Wei Hsu, Jia-Ni Yu, Kuo-Cheng Chiang, Kuan-Lun Cheng, Chih-Hao Wang
  • Publication number: 20240243186
    Abstract: A method for forming a semiconductor device structure includes forming nanostructures in a first region and a second region over a substrate. The method also includes forming a gate dielectric layer surrounding the nanostructures. The method also includes forming dummy structures between the nanostructures. The method also includes forming a dielectric layer over the nanostructures. The method also includes forming a dielectric structure between the nanostructures in the first region and nanostructures in the second region. The method also includes removing the dummy structures in the first region. The method also includes depositing a first work function layer over the nanostructures. The method also includes removing the first work function layer and the dummy structures in the second region. The method also includes depositing a second work function layer over the nanostructures.
    Type: Application
    Filed: January 17, 2023
    Publication date: July 18, 2024
    Inventors: Chun-Fu LU, Lung-Kun CHU, Jia-Ni YU, Mao-Lin HUANG, Chung-Wei HSU, Kuo-Cheng CHIANG, Chih-Hao WANG
  • Patent number: 12040371
    Abstract: A semiconductor structure includes a first stack of semiconductor layers disposed over a semiconductor substrate, where the first stack of semiconductor layers includes a first SiGe layer and a plurality of Si layers disposed over the first SiGe layer and the Si layers are substantially free of Ge, and a second stack of semiconductor layers disposed adjacent to the first stack of semiconductor layers, where the second stack of semiconductor layers includes the first SiGe layer and a plurality of second SiGe layers disposed over the first SiGe layer, and where the first SiGe layer and the second SiGe layers have different compositions. The semiconductor structure further includes a first metal gate stack interleaved with the first stack of semiconductor layers to form a first device and a second metal gate stack interleaved with the second stack of semiconductor layers to form a second device different from the first device.
    Type: Grant
    Filed: February 13, 2023
    Date of Patent: July 16, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Guan-Lin Chen, Kuo-Cheng Chiang, Shi Ning Ju, Chih-Hao Wang, Kuan-Lun Cheng
  • Patent number: 12040191
    Abstract: A structure includes first nanostructures vertically spaced one from another over a substrate in a core region of the semiconductor structure, a first interfacial layer wrapping around each of the first nanostructures, a first high-k dielectric layer over the first interfacial layer and wrapping around each of the first nanostructures, second nanostructures vertically spaced one from another over the substrate in an I/O region of the semiconductor structure, a second interfacial layer wrapping around each of the second nanostructures, a second high-k dielectric layer over the second interfacial layer and wrapping around each of the second nanostructures. The first nanostructures have a first vertical pitch, the second nanostructures have a second vertical pitch substantially equal to the first vertical pitch, the first nanostructures have a first vertical spacing, the second nanostructures have a second vertical spacing greater than the first vertical spacing by about 4 ? to about 20 ?.
    Type: Grant
    Filed: December 21, 2022
    Date of Patent: July 16, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chung-Wei Hsu, Kuo-Cheng Chiang, Mao-Lin Huang, Lung-Kun Chu, Jia-Ni Yu, Kuan-Lun Cheng, Chih-Hao Wang
  • Patent number: 12040273
    Abstract: Semiconductor device and the manufacturing method thereof are disclosed herein. An exemplary semiconductor device comprises a fin disposed over a substrate, a gate structure disposed over a channel region of the fin, such that the gate structure traverses source/drain regions of the fin, a device-level interlayer dielectric (ILD) layer of a multi-layer interconnect structure disposed over the substrate, wherein the device-level ILD layer includes a first dielectric layer, a second dielectric layer disposed over the first dielectric layer, and a third dielectric layer disposed over the second dielectric layer, wherein a material of the third dielectric layer is different than a material of the second dielectric layer and a material of the first dielectric layer. The semiconductor device further comprises a gate contact to the gate structure disposed in the device-level ILD layer and a source/drain contact to the source/drain regions disposed in the device-level ILD layer.
    Type: Grant
    Filed: October 18, 2022
    Date of Patent: July 16, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Lin-Yu Huang, Sheng-Tsung Wang, Jia-Chuan You, Chia-Hao Chang, Tien-Lu Lin, Yu-Ming Lin, Chih-Hao Wang
  • Patent number: 12040387
    Abstract: Circuit devices and methods of forming the same are provided. In one embodiment, a method includes receiving a workpiece that includes a substrate and a fin extending from the substrate, forming a first ferroelectric layer on the fin, forming a dummy gate structure over a channel region of the fin, forming a gate spacer over sidewalls of the dummy gate structure, forming an inter-level dielectric layer over the workpiece, removing the dummy gate structure to expose the first ferroelectric layer over the channel region of the fin, and forming a gate electrode over the exposed first ferroelectric layer over the channel region of the fin.
    Type: Grant
    Filed: July 25, 2023
    Date of Patent: July 16, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Bo-Feng Young, Chih-Yu Chang, Sai-Hooi Yeong, Chi On Chui, Chih-Hao Wang
  • Patent number: 12040329
    Abstract: A semiconductor device structure, along with methods of forming such, are described. The structure includes a semiconductor fin having a first portion having a first width and a second portion having a second width substantially less than the first width. The first portion has a first surface, the second portion has a second surface, and the first and second surfaces are connected by a third surface. The third surface forms an angle with respect to the second surface, and the angle ranges from about 90 degrees to about 130 degrees. The structure further includes a gate electrode layer disposed over the semiconductor fin and source/drain epitaxial features disposed on the semiconductor fin on opposite sides of the gate electrode layer.
    Type: Grant
    Filed: May 23, 2023
    Date of Patent: July 16, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wen-Ting Lan, Shi Ning Ju, Kuo-Cheng Chiang, Kuan-Lun Cheng, Chih-Hao Wang
  • Patent number: 12040386
    Abstract: Semiconductor structures including active fin structures, dummy fin structures, epitaxy layers, a Ge containing oxide layer and methods of manufacture thereof are described. By implementing the Ge containing oxide layer on the surface of the epitaxy layers formed on the source/drain regions of some of the FinFET devices, a self-aligned epitaxy process is enabled. By implementing dummy fin structures and a self-aligned etch, both the epitaxy layers and metal gate structures from adjacent FinFET devices are isolated in a self-aligned manner.
    Type: Grant
    Filed: December 19, 2022
    Date of Patent: July 16, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuo-Cheng Chiang, Kuan-Lun Cheng, Chih-Hao Wang
  • Patent number: 12040281
    Abstract: A manufacturing method of a semiconductor package is provided. The method includes: providing an initial rigid-flexible substrate, wherein the initial rigid-flexible substrate includes rigid structures and a flexible core laterally penetrating through the rigid structures, and further includes a supporting frame connected to the rigid structures; bonding a package structure onto the initial rigid-flexible substrate, wherein the package structure includes semiconductor dies and an encapsulant laterally surrounding the semiconductor dies; and removing the supporting frame.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: July 16, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chuei-Tang Wang, Chen-Hua Yu, Chung-Shi Liu, Chih-Yuan Chang, Jiun-Yi Wu, Jeng-Shien Hsieh, Tin-Hao Kuo
  • Patent number: 12040385
    Abstract: Present disclosure provides a method for forming a semiconductor structure, including forming a dielectric layer over a semiconductor substrate, patterning an insulator stripe over the semiconductor substrate, including forming an insulator layer over the semiconductor substrate and at a bottom of the insulator stripe, depositing a semiconductor capping layer continuously over the insulator stripe, wherein the semiconductor capping layer includes crystalline materials, wherein the semiconductor capping layer is free from being in direct contact with the semiconductor substrate, and cutting off the semiconductor capping layer between the insulator stripes, forming a gate, wherein the gate is in direct contact with the semiconductor capping layer, a first portion of the semiconductor capping layer covered by the gate is configured as a channel structure, and forming a conductible region at a portion of the insulator stripe not covered by the gate stripe by a regrowth operation.
    Type: Grant
    Filed: April 24, 2023
    Date of Patent: July 16, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chi-Yi Chuang, Ching-Wei Tsai, Kuan-Lun Cheng, Chih-Hao Wang
  • Publication number: 20240234537
    Abstract: A method for manufacturing a semiconductor structure includes forming fins over a substrate. Each of the fins includes a base fin protruding from the substrate, and first semiconductor layers and second semiconductor layers alternating stacked over the base fin. The method further includes forming an isolation structure between the base fins, forming a hard mask layer over the isolation structure, and removing the second semiconductor layers, so that the first semiconductor layers and the hard mask layer are exposed in a gate trench. The method further includes forming a gate structure in the gate trench. The gate structure wraps around the first semiconductor layers and over the hard mask layer.
    Type: Application
    Filed: January 10, 2023
    Publication date: July 11, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuan-Ting PAN, Kuo-Cheng CHIANG, Shi-Ning JU, Chih-Hao WANG