Patents by Inventor Chih-Hsien Chang

Chih-Hsien Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210305975
    Abstract: A phase interpolating (PI) system includes: a phase-interpolating (PI) stage configured to receive first and second clock signals and a multi-bit weighting signal, and generate an interpolated clock signal, the PI stage being further configured to avoid a pull-up/pull-down (PUPD) short-circuit situation by using the multi-bit weighting signal and a logical inverse thereof (multi-bit weighting_bar signal); and an amplifying stage configured to receive and amplify the interpolated clock signal, the amplifying stage including a capacitive component; the capacitive component being tunable; and the capacitive component having a Miller effect configuration resulting in a reduced footprint of the amplifying stage.
    Type: Application
    Filed: September 14, 2020
    Publication date: September 30, 2021
    Inventors: Tsung-Che LU, Chin-Ming FU, Chih-Hsien CHANG
  • Publication number: 20210270879
    Abstract: Systems, methods, and circuits for determining a duty cycle of a periodic input signal are provided. A delay element is configured to delay the periodic input signal based on a digital control word. A digital circuit is configured to generate a first digital control word used to delay the periodic input signal a first amount of time corresponding to a period of the periodic input signal, generate a second digital control word used to delay the periodic input signal a second amount of time corresponding to a portion of the periodic input signal having a logic-level high value, and generate a third digital control word used to delay the periodic input signal a third amount of time corresponding to a portion of the periodic input signal having a logic-level low value. A controller is configured to determine the duty cycle based on the first, second, and third digital control words.
    Type: Application
    Filed: December 17, 2020
    Publication date: September 2, 2021
    Inventors: Tsung-Hsien Tsai, Ruey-Bin Sheen, Chih-Hsien Chang, Cheng-Hsiang Hsieh
  • Publication number: 20210258003
    Abstract: Systems, methods, and devices are provided for a circuit for generating a pulse output having a controllable pulse width. Systems and methods may include a delay line having a plurality of stages. A delay per stage calculation circuit is configured to determine a per-stage delay of the delay line using a first clock input. A pulse generation circuit is configured to generate the pulse output using the delay line based on the per-stage delay using a second clock input, the second clock input having a lower frequency than the first clock input.
    Type: Application
    Filed: May 6, 2021
    Publication date: August 19, 2021
    Inventors: Ruey-Bin Sheen, Ming Hsien Tsai, Chih-Hsien Chang, Tsung-Hsien Tsai
  • Publication number: 20210250041
    Abstract: A device includes a phase detector circuit, a charge pump circuit, a sample and hold circuit, a comparator, and a controller. The phase detector circuit detects a clock skew between a reference signal and an input signal. The charge pump circuit translates the clock skew into a voltage. A sample and hold circuit samples the voltage, at a first time, and maintain the sampled voltage until a second time. The comparator (i) detects a loop gain associated with the input signal based on the sampled voltage and the voltage at the second time and (ii) outputs a loop gain signal for adjustment of the input signal. The controller is coupled to the phase detector, the comparator, and the sample and hold circuit. The controller generates a plurality of control signals for automatically controlling operation of the phase detector, the comparator, and the sample and hold circuit.
    Type: Application
    Filed: December 4, 2020
    Publication date: August 12, 2021
    Inventors: Mao-Hsuan Chou, Ya-Tin Chang, Ruey-Bin Sheen, Chih-Hsien Chang
  • Publication number: 20210242862
    Abstract: Systems, methods, and devices are provided for a circuit for generating a pulse output having a controllable pulse width. Systems and methods may include a delay line having a plurality of stages. A delay per stage calculation circuit is configured to determine a per-stage delay of the delay line using a first clock input. A pulse generation circuit is configured to generate the pulse output using the delay line based on the per-stage delay using a second clock input, the second clock input having a lower frequency than the first clock input.
    Type: Application
    Filed: April 19, 2021
    Publication date: August 5, 2021
    Inventors: Ruey-Bin Sheen, Ming Hsien Tsai, Chih-Hsien Chang, Tsung-Hsien Tsai
  • Patent number: 11077217
    Abstract: The present invention provides a radioactive labeling method for neuropeptide Y (NPY) compound and a mammalian diagnostic radioactive targeting medicine with NPY peptide being modified at position 27th to 36th, and after binding with the chelating agent and labeling the radiation nucleus 66Ga67Ga68Ga177Lu or 111In to provide a radioactive targeting medicine for multi-type breast cancer diagnosis and treatment.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: August 3, 2021
    Assignee: INSTITUTE OF NUCLEAR ENERGY RESEARCH, ATOMIC ENERGY COUNCIL, EXECUTIVE YUAN
    Inventors: Ming-Hsin Li, Su-Jung Chen, Ming-Wei Chen, Yuan-Ruei Huang, Shih-Ying Lee, Chun-Fang Feng, Sheng-Nan Lo, Chih-Hsien Chang
  • Publication number: 20210226584
    Abstract: Oscillators and methods for realignment of an oscillator are provided. An oscillator includes an inductor having first and second terminals and a capacitor electrically coupled in parallel to the inductor at the first and second terminals. A first transistor of a first conductivity type is electrically coupled to the first terminal and a voltage source. The first transistor includes a gate configured to receive a first realignment signal. When the first realignment signal is in a realignment state, the first transistor is turned on and a voltage of the first terminal is increased from a low level to a high level in order to align a phase of a waveform of the oscillator.
    Type: Application
    Filed: December 14, 2020
    Publication date: July 22, 2021
    Inventors: Tsung-Hsien Tsai, Ruey-Bin Sheen, Chih-Hsien Chang, Cheng-Hsiang Hsieh
  • Publication number: 20210173009
    Abstract: An apparatus and method for providing a phase noise built-in self test (BIST) circuit are disclosed herein. In some embodiments, a method and apparatus for forming a multi-stage noise shaping (MASH) type high-order delta sigma (??) time-to-digital converter (TDC) are disclosed. In some embodiments, an apparatus includes a plurality of first-order ?? TDCs formed in an integrated circuit (IC) chip, wherein each of the first-order ?? DCs are connected to one another in a MASH type configuration to provide the MASH type high-order ?? TDC, wherein the MASH type high-order ?? TDC is configured to measure the phase noise of a device under text (DUT).
    Type: Application
    Filed: February 19, 2021
    Publication date: June 10, 2021
    Inventors: Mao-Hsuan CHOU, Ya-Tin Chang, Ruey-Ben Sheen, Chih-Hsien Chang
  • Patent number: 11031927
    Abstract: Systems, methods, and devices are provided for a circuit for generating a pulse output having a controllable pulse width. Systems and methods may include a delay line having a plurality of stages. A delay per stage calculation circuit is configured to determine a per-stage delay of the delay line using a first clock input. A pulse generation circuit is configured to generate the pulse output using the delay line based on the per-stage delay using a second clock input, the second clock input having a lower frequency than the first clock input.
    Type: Grant
    Filed: January 3, 2020
    Date of Patent: June 8, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Ruey-Bin Sheen, Ming Hsien Tsai, Chih-Hsien Chang, Tsung-Hsien Tsai
  • Publication number: 20210167784
    Abstract: A frequency divider circuit includes a counter configured to generate a counter signal responsive to a frequency of a clock signal and a frequency ratio, and a compensation circuit coupled to the counter, and configured to generate an output signal. The output signal has a frequency equal to the frequency of the clock signal divided by a frequency ratio, and a duty cycle lower than 50% and greater than 1/r, where r is the frequency ratio.
    Type: Application
    Filed: February 9, 2021
    Publication date: June 3, 2021
    Inventors: Mao-Hsuan CHOU, Ruey-Bin SHEEN, Chih-Hsien CHANG
  • Patent number: 10965293
    Abstract: A delay-locked loop includes a phase detector configured to detect a phase difference between a first clock and a second clock, a charge pump configured to increase a charge amount at a capacitive load in accordance with a first charge amount and decrease the charge amount at the capacitive load in accordance with a second charge amount based on a phase difference provided by the phase detector, a sample and hold circuit configured to receive the charge amount from the capacitive load and hold the charge amount, and a voltage control delay line configured to select a delay amount based on the charge amount received from the sample and hold circuit. At least one parameter of the delay-locked loop is configured such that a desired pump current ratio of a delay cell is achieved by adjusting a delay amount of the delay cell and/or an amount of current coupled to the delay cell.
    Type: Grant
    Filed: March 5, 2020
    Date of Patent: March 30, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ya-Tin Chang, Chih-Hsien Chang, Mao-Hsuan Chou, Ruey-Bin Sheen
  • Publication number: 20210080503
    Abstract: A circuit is disclosed. The circuit includes a time-to-digital converter (TDC), and an evaluation circuit coupled to the TDC and a phase-locked loop (PLL) external to the circuit.
    Type: Application
    Filed: September 17, 2019
    Publication date: March 18, 2021
    Inventors: CHAO CHIEH LI, CHIA-CHUN LIAO, MIN-SHUEH YUAN, CHIH-HSIEN CHANG
  • Publication number: 20210075412
    Abstract: A method and apparatus of generating precision phase skews is disclosed. In some embodiments, a phase skew generator includes: a charge pump having a first mode of operation and a second mode of operation, wherein the first mode of operation provides a first current path during a first time period, and the second mode of operation provides a second current path during a second time period following the first time period, a sample and hold circuit, coupled to a capacitor, and configured to sample a voltage level of the capacitor at predetermined times and provide an output voltage during a third time period following the second time period; and a voltage controlled delay line, coupled to the sample and hold circuit, and having M delay line stages each configured to output a signal having a phase skew offset with respect to preceding or succeeding signal.
    Type: Application
    Filed: November 19, 2020
    Publication date: March 11, 2021
    Inventors: Mao-Hsuan CHOU, Ya-Tin CHANG, Ruey-Bin SHEEN, Chih-Hsien CHANG
  • Publication number: 20210068296
    Abstract: An electronic module (EM) carrier includes a sliding bracket coupled to the EM carrier and a handle coupled to the sliding bracket. The handle and sliding bracket are configured to engage with a stationary chassis to hold the EM carrier at a first position in a bay of the stationary chassis when the handle is open. The sliding bracket is further configured to translate the EM carrier to a second position in the stationary chassis when the handle is moved from an open position towards a closed position. In the second position, an EM carrier connector of the EM carrier is engaged with a sled connector of a sled and, in the first position, the EM carrier connector is disengaged from the sled connector.
    Type: Application
    Filed: August 28, 2019
    Publication date: March 4, 2021
    Inventors: TE-MING LIAO, CHUN-YANG TSENG, CHIH-HSIEN CHANG, HSIANG-YIN HUNG, RAYMOND D. HEISTAND, II
  • Patent number: 10939573
    Abstract: An electronic module (EM) carrier includes a sliding bracket coupled to the EM carrier and a handle coupled to the sliding bracket. The handle and sliding bracket are configured to engage with a stationary chassis to hold the EM carrier at a first position in a bay of the stationary chassis when the handle is open. The sliding bracket is further configured to translate the EM carrier to a second position in the stationary chassis when the handle is moved from an open position towards a closed position. In the second position, an EM carrier connector of the EM carrier is engaged with a sled connector of a sled and, in the first position, the EM carrier connector is disengaged from the sled connector.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: March 2, 2021
    Assignee: Dell Products, L.P.
    Inventors: Te-Ming Liao, Chun-Yang Tseng, Chih-Hsien Chang, Hsiang-Yin Hung, Raymond D. Heistand, II
  • Patent number: 10928447
    Abstract: An apparatus and method for providing a phase noise built-in self test (BIST) circuit are disclosed herein. In some embodiments, a method and apparatus for forming a multi-stage noise shaping (MASH) type high-order delta sigma (??) time-to-digital converter (TDC) are disclosed. In some embodiments, an apparatus includes a plurality of first-order ?? TDCs formed in an integrated circuit (IC) chip, wherein each of the first-order ?? TDCs are connected to one another in a MASH type configuration to provide the MASH type high-order ?? TDC, wherein the MASH type high-order ?? TDC is configured to measure the phase noise of a device under text (DUT).
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: February 23, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Mao-Hsuan Chou, Ya-Tin Chang, Ruey-Bin Sheen, Chih-Hsien Chang
  • Patent number: 10924125
    Abstract: A frequency divider circuit includes a counter configured to generate a counter signal responsive to a frequency of a clock signal and a frequency ratio, and a compensation circuit coupled to the counter, and configured to generate an output signal. The output signal has a frequency equal to the frequency of the clock signal divided by a frequency ratio, and a duty cycle greater than 1/r, where r is the frequency ratio.
    Type: Grant
    Filed: October 9, 2019
    Date of Patent: February 16, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Mao-Hsuan Chou, Chih-Hsien Chang, Ruey-Bin Sheen
  • Publication number: 20210028789
    Abstract: Phase-locked loops (PLLs) are provided. A PLL includes a voltage-controlled oscillator (VCO), a frequency divider and a track-and-hold charge pump. The VCO is configured to provide an output clock corresponding to a pumping current. The frequency divider is configured to provide a feedback signal according to the output clock. The track-and-hold charge pump is configured to provide the pumping current according to a reference clock and the feedback signal. The track-and-hold charge pump includes a track-and-hold circuit, a pumping switch and a pulse width modulator (PWM). The track-and-hold circuit is coupled to the frequency divider and configured to sample the feedback signal according to the reference clock. The PWM is configured to provide a PWM signal to control the pumping switch according to the reference clock, so as to provide the pumping current corresponding to the sampled feedback signal.
    Type: Application
    Filed: October 13, 2020
    Publication date: January 28, 2021
    Inventors: Ting-Kuei KUAN, Cheng-Hsiang HSIEH, Chen-Ting KO, Ruey-Bin SHEEN, Chih-Hsien CHANG
  • Publication number: 20210028772
    Abstract: A controlling circuit for ring oscillator is provided. First and second transistors of a first conductive type are coupled in series and between a node and a first power source. Third and fourth transistors of a second conductive type are coupled in parallel and between the node and a second power source. The node is coupled to an input of a delay chain of the ring oscillator. The second and third transistors are coupled in series and gates of the second and third transistors are configured to receive an output signal of the delay chain. When the first transistor is turned off and the fourth transistor is turned on, the node is pulled to a first logic level from a second logic level in order to align a phase of a waveform of the ring oscillator.
    Type: Application
    Filed: October 8, 2020
    Publication date: January 28, 2021
    Inventors: Tsung-Hsien TSAI, Ruey-Bin SHEEN, Chih-Hsien CHANG, Cheng-Hsiang HSIEH
  • Publication number: 20200412351
    Abstract: Systems, methods, and devices are provided for a circuit for generating a pulse output having a controllable pulse width. Systems and methods may include a delay line having a plurality of stages. A delay per stage calculation is circuit configured to determine a per-stage delay of the delay line using a first clock input. A pulse generation circuit is configured to generate the pulse output using the delay line based on the per-stage delay using a second clock input, the second clock input having a lower frequency than the first clock input.
    Type: Application
    Filed: January 3, 2020
    Publication date: December 31, 2020
    Inventors: Ruey-Bin Sheen, Ming Hsien Tsai, Chih-Hsien Chang, Tsung-Hsien Tsai