Patents by Inventor Chih-Yu Chang

Chih-Yu Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250040214
    Abstract: A semiconductor fabrication method includes: forming an epitaxial stack including at least one sacrificial epitaxial layer and at least one channel epitaxial layer; forming a plurality of fins in the epitaxial stack; performing tuning operations to prevent a width of the sacrificial epitaxial layer expanding beyond a width of the channel epitaxial layer during operations to form isolation features; forming the isolation features between the plurality of fins, wherein the width of the sacrificial epitaxial layer does not expand beyond the width of the channel epitaxial layer; forming a sacrificial gate stack; forming gate sidewall spacers on sidewalls of the sacrificial gate stack; forming inner spacers around the sacrificial epitaxial layer and the channel epitaxial layer; forming source/drain features; removing the sacrificial gate stack and sacrificial epitaxial layer; and forming a replacement metal gate, wherein the metal gate is shielded from the source/drain features.
    Type: Application
    Filed: July 27, 2023
    Publication date: January 30, 2025
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuei-Yu Kao, Shih-Yao Lin, Chiung-Yu Cho, Po-Yuan Tseng, Min-Chiao Lin, Chen-Ping Chen, Chih-Han Lin, Ming-Ching Chang
  • Publication number: 20250035603
    Abstract: A positioning pollutant-measuring system includes a cloud server, a wireless base station, an automatic moving vehicle, and a positioning pollutant-measuring device. The automatic moving vehicle carries the positioning pollutant-measuring device and passes through different locations. The positioning pollutant-measuring device receives location related parameters from the wireless base station and measures the air flow rates or the air humidity of the different locations to adjust a resolution for measuring pollutants corresponding to the different locations.
    Type: Application
    Filed: June 24, 2024
    Publication date: January 30, 2025
    Inventors: Chia-Jui YANG, HERMAN CHUNGHWA RAO, Chun-Chieh KUO, Hua-Pei CHIANG, Shui-Shu HSIAO, Zheng-Xiang CHANG, Chyi-Dar JANG, Tsung-Jen WANG, Che-Yu LIAO, Chih-Min CHAN, Teng-Chieh YANG, CHANG-HUNG HSU
  • Patent number: 12211871
    Abstract: The present disclosure relates to an integrated chip including a substrate and a pixel. The pixel includes a photodetector. The photodetector is in the substrate. The integrated chip further includes a first inner trench isolation structure and an outer trench isolation structure that extend into the substrate. The first inner trench isolation structure laterally surrounds the photodetector in a first closed loop. The outer trench isolation structure laterally surrounds the first inner trench isolation structure along a boundary of the pixel in a second closed loop and is laterally separated from the first inner trench isolation structure. Further, the integrated chip includes a scattering structure that is defined, at least in part, by the first inner trench isolation structure and that is configured to increase an angle at which radiation impinges on the outer trench isolation structure.
    Type: Grant
    Filed: March 18, 2021
    Date of Patent: January 28, 2025
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng Yu Huang, Chun-Hao Chuang, Keng-Yu Chou, Wei-Chieh Chiang, Wen-Hau Wu, Chih-Kung Chang
  • Patent number: 12210055
    Abstract: In some embodiments, a semiconductor wafer testing system is provided. The semiconductor wafer testing system includes a semiconductor wafer prober having one or more conductive probes, where the semiconductor wafer prober is configured to position the one or more conductive probes on an integrated chip (IC) that is disposed on a semiconductor wafer. The semiconductor wafer testing system also includes a ferromagnetic wafer chuck, where the ferromagnetic wafer chuck is configured to hold the semiconductor wafer while the wafer prober positions the one or more conductive probes on the IC. An upper magnet is disposed over the ferromagnetic wafer chuck, where the upper magnet is configured to generate an external magnetic field between the upper magnet and the ferromagnetic wafer chuck, and where the ferromagnetic wafer chuck amplifies the external magnetic field such that the external magnetic field passes through the IC with an amplified magnetic field strength.
    Type: Grant
    Filed: June 20, 2023
    Date of Patent: January 28, 2025
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Harry-Hak-Lay Chuang, Chih-Yang Chang, Ching-Huang Wang, Tien-Wei Chiang, Meng-Chun Shih, Chia Yu Wang
  • Patent number: 12204163
    Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.
    Type: Grant
    Filed: February 5, 2024
    Date of Patent: January 21, 2025
    Assignee: TDK TAIWAN CORP.
    Inventors: Chao-Chang Hu, Chih-Wei Weng, Chia-Che Wu, Chien-Yu Kao, Hsiao-Hsin Hu, He-Ling Chang, Chao-Hsi Wang, Chen-Hsien Fan, Che-Wei Chang, Mao-Gen Jian, Sung-Mao Tsai, Wei-Jhe Shen, Yung-Ping Yang, Sin-Hong Lin, Tzu-Yu Chang, Sin-Jhong Song, Shang-Yu Hsu, Meng-Ting Lin, Shih-Wei Hung, Yu-Huai Liao, Mao-Kuo Hsu, Hsueh-Ju Lu, Ching-Chieh Huang, Chih-Wen Chiang, Yu-Chiao Lo, Ying-Jen Wang, Shu-Shan Chen, Che-Hsiang Chiu
  • Patent number: 12205896
    Abstract: Semiconductor devices and methods of forming the same are provided. In one embodiment, a semiconductor device includes an active region including a channel region and a source/drain region and extending along a first direction, and a source/drain contact structure over the source/drain region. The source/drain contact structure includes a base portion extending lengthwise along a second direction perpendicular to the first direction, and a via portion over the base portion. The via portion tapers away from the base portion.
    Type: Grant
    Filed: July 28, 2023
    Date of Patent: January 21, 2025
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Lin-Yu Huang, Li-Zhen Yu, Chia-Hao Chang, Cheng-Chi Chuang, Kuan-Lun Cheng, Chih-Hao Wang
  • Publication number: 20250022945
    Abstract: Various embodiments of the present disclosure provide a semiconductor device structure. In one embodiment, the semiconductor device structure includes a first source/drain feature and a second source/drain feature, a plurality of semiconductor layers vertically stacked and disposed between the first and second source/drain features, a gate electrode layer surrounding a portion of each of the plurality of the semiconductor layers, and an interfacial layer (IL) disposed between the gate electrode layer and one of the plurality of the semiconductor layers, wherein a topmost semiconductor layer of the plurality of the semiconductor layers has a first length, and the IL has a second length greater than the first length.
    Type: Application
    Filed: July 14, 2023
    Publication date: January 16, 2025
    Inventors: Chung-En TSAI, Sheng-Syun WONG, Cheng-Han LEE, Chih-Yu MA, Shih-Chieh CHANG
  • Publication number: 20250022957
    Abstract: The present disclosure provides a semiconductor device and a method of forming the same. A method according one embodiment of the present disclosure include forming a stack over a substrate, forming a fin-shape structure from patterning the stack and the substrate, recessing the fin-shape structure to form a source/drain trench, depositing a dielectric film in the source/drain trench with a top surface below a top surface of the substrate in the fin-shape structure, and forming an epitaxial feature over the dielectric film. A bottom surface of the epitaxial feature is below the top surface of the substrate in the fin-shape structure.
    Type: Application
    Filed: October 23, 2023
    Publication date: January 16, 2025
    Inventors: Che-Yu Lin, Chien-Chia Cheng, Chih-Chiang Chang, Chien-I Kuo, Ming-Hua Yu, Chii-Horng Li, Syun-Ming Jang, Wei-Jen Lo
  • Publication number: 20250022914
    Abstract: A method of forming a nanosheet FET is provided. A plurality of first and second semiconductor layers are alternately formed on a substrate. The first and second semiconductor layers are patterned into a plurality of stacks of semiconductor layers separate from each other by a space along a direction. Each stack of semiconductor layers has a cross-sectional view along the direction gradually widening towards the substrate. An epitaxial feature is formed in each of the spaces. The patterned second semiconductor layers are then removed from each of the stacks of semiconductor layers.
    Type: Application
    Filed: July 14, 2023
    Publication date: January 16, 2025
    Inventors: Kuei-Yu KAO, Shih-Yao LIN, Chiung-Yu CHO, Chen-Ping CHEN, Chih-Han LIN, Ming-Ching CHANG
  • Patent number: 12193241
    Abstract: The present disclosure, in some embodiments, relates to a ferroelectric memory device. The ferroelectric memory device includes a multi-layer stack disposed on a substrate. The multi-layer stack has a plurality of conductive layers and a plurality of dielectric layers stacked alternately. A channel layer penetrates through the plurality of conductive layers and the plurality of dielectric layers. A ferroelectric layer is disposed between the channel layer and both of the plurality of conductive layers and the plurality of dielectric layers. A plurality of oxygen scavenging layers are disposed along sidewalls of the plurality of conductive layer. The plurality of oxygen scavenging layers laterally separate the ferroelectric layer from the plurality of conductive layers.
    Type: Grant
    Filed: June 16, 2023
    Date of Patent: January 7, 2025
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Chieh Lu, Sai-Hooi Yeong, Bo-Feng Young, Yu-Ming Lin, Chih-Yu Chang
  • Patent number: 12176433
    Abstract: The present disclosure relates a ferroelectric field-effect transistor (FeFET) device. The FeFET device includes a ferroelectric structure having a first side and a second side. A gate structure is disposed along the first side of the ferroelectric structure, and an oxide semiconductor is disposed along the second side of the ferroelectric structure. The oxide semiconductor has a first semiconductor type. A source region and a drain region are disposed on the oxide semiconductor. The gate structure is laterally between the source region and the drain region. A polarization enhancement structure is arranged on the oxide semiconductor between the source region and the drain region. The polarization enhancement structure includes a semiconductor material or an oxide semiconductor material having a second semiconductor type that is different than the first semiconductor type.
    Type: Grant
    Filed: May 30, 2023
    Date of Patent: December 24, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Yu Chang, Mauricio Manfrini, Hung Wei Li, Yu-Ming Lin
  • Patent number: 12154938
    Abstract: Embodiments include structures and methods for fabricating an MFM capacitor having a plurality of metal contacts. An embodiment may include a first metal strip, disposed on a substrate and extending in a first direction, a ferroelectric blanket layer, disposed on the first metal strip, a second metal strip, disposed on the ferroelectric blanket layer and extending in a second direction different from the first direction, and a plurality of metal contacts disposed between the first metal strip and the second metal strip and located within an intersection region of the first metal strip and the second metal strip.
    Type: Grant
    Filed: April 5, 2021
    Date of Patent: November 26, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Chun-Chieh Lu, Mauricio Manfrini, Marcus Johannes Hendricus Van Dal, Chih-Yu Chang, Sai-Hooi Yeong, Yu-Ming Lin, Georgios Vallianitis
  • Publication number: 20240389351
    Abstract: A semiconductor chip including a semiconductor substrate, an interconnect structure and a memory cell array is provided. The semiconductor substrate includes a logic circuit. The interconnect structure is disposed on the semiconductor substrate and electrically connected to the logic circuit, and the interconnect structure includes stacked interlayer dielectric layers and interconnect wirings embedded in the stacked interlayer dielectric layers. The memory cell array is embedded in the stacked interlayer dielectric layers. The memory cell array includes driving transistors and memory devices, and the memory devices are electrically connected the driving transistors through the interconnect wirings.
    Type: Application
    Filed: July 29, 2024
    Publication date: November 21, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Bo-Feng Young, Sai-Hooi Yeong, Yu-Ming Lin, Chih-Yu Chang, Han-Jong Chia
  • Publication number: 20240389346
    Abstract: A semiconductor chip including a semiconductor substrate, an interconnect structure and a memory cell array is provided. The semiconductor substrate includes a logic circuit. The interconnect structure is disposed on the semiconductor substrate and electrically connected to the logic circuit, and the interconnect structure includes stacked interlayer dielectric layers and interconnect wirings embedded in the stacked interlayer dielectric layers. The memory cell array is embedded in the stacked interlayer dielectric layers. The memory cell array includes driving transistors and memory devices, and the memory devices are electrically connected the driving transistors through the interconnect wirings.
    Type: Application
    Filed: July 30, 2024
    Publication date: November 21, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Bo-Feng Young, Sai-Hooi Yeong, Yu-Ming Lin, Chih-Yu Chang, Han-Jong Chia
  • Publication number: 20240389345
    Abstract: Various embodiments of the present disclosure are directed towards a method of forming a ferroelectric memory device. In the method, a pair of source/drain regions is formed in a substrate. A gate dielectric and a gate electrode are formed over the substrate and between the pair of source/drain regions. A polarization switching structure is formed directly on a top surface of the gate electrode. By arranging the polarization switching structure directly on the gate electrode, smaller pad size can be realized, and more flexible area ratio tuning can be achieved compared to arranging the polarization switching structure under the gate electrode with the aligned sidewall and same lateral dimensions. In addition, since the process of forming gate electrode can endure higher annealing temperatures, such that quality of the ferroelectric structure is better controlled.
    Type: Application
    Filed: July 26, 2024
    Publication date: November 21, 2024
    Inventors: Bo-Feng Young, Chung-Te Lin, Sai-Hooi Yeong, Yu-Ming Lin, Sheng-Chih Lai, Chih-Yu Chang, Han-Jong Chia
  • Patent number: 12150308
    Abstract: A semiconductor chip including a semiconductor substrate, an interconnect structure and a memory cell array is provided. The semiconductor substrate includes a logic circuit. The interconnect structure is disposed on the semiconductor substrate and electrically connected to the logic circuit, and the interconnect structure includes stacked interlayer dielectric layers and interconnect wirings embedded in the stacked interlayer dielectric layers. The memory cell array is embedded in the stacked interlayer dielectric layers. The memory cell array includes driving transistors and memory devices, and the memory devices are electrically connected the driving transistors through the interconnect wirings.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: November 19, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Bo-Feng Young, Sai-Hooi Yeong, Yu-Ming Lin, Chih-Yu Chang, Han-Jong Chia
  • Patent number: 12150311
    Abstract: Various embodiments of the present disclosure are directed towards a method of forming a ferroelectric memory device. In the method, a pair of source/drain regions is formed in a substrate. A gate dielectric and a gate electrode are formed over the substrate and between the pair of source/drain regions. A polarization switching structure is formed directly on a top surface of the gate electrode. By arranging the polarization switching structure directly on the gate electrode, smaller pad size can be realized, and more flexible area ratio tuning can be achieved compared to arranging the polarization switching structure under the gate electrode with the aligned sidewall and same lateral dimensions. In addition, since the process of forming gate electrode can endure higher annealing temperatures, such that quality of the ferroelectric structure is better controlled.
    Type: Grant
    Filed: August 3, 2023
    Date of Patent: November 19, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Bo-Feng Young, Chung-Te Lin, Sai-Hooi Yeong, Yu-Ming Lin, Sheng-Chih Lai, Chih-Yu Chang, Han-Jong Chia
  • Patent number: 12148843
    Abstract: A semiconductor device includes a silicon germanium channel, a germanium-free interfacial layer, a high-k dielectric layer, and a metal gate electrode. The silicon germanium channel is over a substrate. The germanium-free interfacial layer is over the silicon germanium channel. The germanium-free interfacial layer is nitridated. The high-k dielectric layer is over the germanium-free interfacial layer. The metal gate electrode is over the high-k dielectric layer.
    Type: Grant
    Filed: May 12, 2023
    Date of Patent: November 19, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Yu Chang, Hsiang-Pi Chang, Zi-Wei Fang
  • Publication number: 20240381654
    Abstract: The present disclosure, in some embodiments, relates to an integrated chip structure. The integrated chip structure includes a multi-layer stack disposed on a substrate and having a plurality of conductive layers interleaved between a plurality of dielectric layers. A channel layer is arranged along a side of the multi-layer stack. A ferroelectric material is arranged between the channel layer and the side of the multi-layer stack. A plurality of oxygen scavenging layers are respectively arranged between the ferroelectric material and sidewalls of the plurality of conductive layers. The plurality of oxygen scavenger layers are entirely confined below the plurality of dielectric layers.
    Type: Application
    Filed: July 24, 2024
    Publication date: November 14, 2024
    Inventors: Chun-Chieh Lu, Sai-Hooi Yeong, Bo-Feng Young, Yu-Ming Lin, Chih-Yu Chang
  • Patent number: 12136659
    Abstract: Negative capacitance field-effect transistor (NCFET) and ferroelectric field-effect transistor (FE-FET) devices and methods of forming are provided. The gate dielectric stack includes a ferroelectric gate dielectric layer. An amorphous high-k dielectric layer and a dopant-source layer are deposited sequentially followed by a post-deposition anneal (PDA). The PDA converts the amorphous high-k layer to a polycrystalline high-k film with crystalline grains stabilized by the dopants in a crystal phase in which the high-k dielectric is a ferroelectric high-k dielectric. After the PDA, the remnant dopant-source layer may be removed. A gate electrode is formed over remnant dopant-source layer (if present) and the polycrystalline high-k film.
    Type: Grant
    Filed: July 31, 2023
    Date of Patent: November 5, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Te-Yang Lai, Chun-Yen Peng, Chih-Yu Chang, Bo-Feng Young, Sai-Hooi Yeong, Chi On Chui