Patents by Inventor Chih-Yu Chang
Chih-Yu Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250120151Abstract: A method of fabricating a semiconductor structure includes forming a recess in an active channel structure by removing a portion thereof, filling the recess with a dielectric material, forming a cladding layer adjacent the active channel structure but not adjacent the dielectric material, and forming a gate structure comprising a first gate structure and a second gate structure around the active channel structure. A width of the dielectric material in the recess is greater than a width of the first gate structure and a width of the second gate structure.Type: ApplicationFiled: December 16, 2024Publication date: April 10, 2025Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: KUEI-YU KAO, Shih-Yao LIN, Chen-Ping Chen, Chih-Han Lin, MING-CHING CHANG, CHAO-CHENG CHEN
-
Publication number: 20250120167Abstract: A semiconductor device includes a plurality of semiconductor layers vertically separated from one another, a gate structure that comprises a lower portion and an upper portion, a gate spacer that extends along a sidewall of the upper portion of the gate structure and has a bottom surface, and an etch stop layer extends between the portion of the bottom surface of the gate spacer and the top surface of the topmost semiconductor layer.Type: ApplicationFiled: December 16, 2024Publication date: April 10, 2025Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Kuei-Yu Kao, Chao-Cheng Chen, Chih-Han Lin, Chen-Ping Chen, Ming-Ching Chang, Shih-Yao Lin, Chih-Chung Chiu
-
Publication number: 20250114474Abstract: Provided are a composition and a method for preventing thrombogenesis. The composition includes a conjugate of heparin and a viral capsid protein, wherein the heparin is covalently bonded with the viral capsid protein.Type: ApplicationFiled: October 7, 2024Publication date: April 10, 2025Inventors: Chia-Ching CHANG, Chia-Yu CHANG, Chih-Yu YANG
-
Patent number: 12271113Abstract: Method of manufacturing semiconductor device includes forming photoresist layer over substrate. Forming photoresist layer includes combining first precursor and second precursor in vapor state to form photoresist material, wherein first precursor is organometallic having formula: MaRbXc, where M at least one of Sn, Bi, Sb, In, Te, Ti, Zr, Hf, V, Co, Mo, W, Al, Ga, Si, Ge, P, As, Y, La, Ce, Lu; R is substituted or unsubstituted alkyl, alkenyl, carboxylate group; X is halide or sulfonate group; and 1?a?2, b?1, c?1, and b+c?5. Second precursor is at least one of an amine, a borane, a phosphine. Forming photoresist layer includes depositing photoresist material over the substrate. The photoresist layer is selectively exposed to actinic radiation to form latent pattern, and the latent pattern is developed by applying developer to selectively exposed photoresist layer to form pattern.Type: GrantFiled: January 15, 2021Date of Patent: April 8, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Chih-Cheng Liu, Yi-Chen Kuo, Jia-Lin Wei, Ming-Hui Weng, Yen-Yu Chen, Jr-Hung Li, Yahru Cheng, Chi-Ming Yang, Tze-Liang Lee, Ching-Yu Chang
-
Patent number: 12272658Abstract: A method of making a semiconductor device includes manufacturing an ESD cell over a substrate, wherein the ESD cell includes multiple diodes connected in parallel to each other. The method includes manufacturing a conductive pillar electrically connected to the ESD cell of the semiconductor device; manufacturing a through-silicon via (TSV) extending through the substrate, wherein the TSV extends through the substrate within a TSV zone having a TSV zone perimeter, and wherein a first end of the TSV is at a same side of the substrate as the ESD cell, and a second end of the TSV is at a different side of the substrate from the ESD cell. The method includes manufacturing an antenna extending parallel to the TSV at a same side of the substrate as the ESD cell; and manufacturing an antenna pad electrically connected to the TSV, the antenna, and the conductive pillar.Type: GrantFiled: March 25, 2024Date of Patent: April 8, 2025Assignees: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD., TSMC CHINA COMPANY, LIMITEDInventors: HoChe Yu, Fong-Yuan Chang, XinYong Wang, Chih-Liang Chen, Tzu-Heng Chang
-
Patent number: 12272554Abstract: A method of manufacturing semiconductor device includes forming a multilayer photoresist structure including a metal-containing photoresist over a substrate. The multilayer photoresist structure includes two or more metal-containing photoresist layers having different physical parameters. The metal-containing photoresist is a reaction product of a first precursor and a second precursor, and each layer of the multilayer photoresist structure is formed using different photoresist layer formation parameters. The different photoresist layer formation parameters are one or more selected from the group consisting of the first precursor, an amount of the first precursor, the second precursor, an amount of the second precursor, a length of time each photoresist layer formation operation, and heating conditions of the photoresist layers.Type: GrantFiled: July 27, 2023Date of Patent: April 8, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Jia-Lin Wei, Ming-Hui Weng, Chih-Cheng Liu, Yi-Chen Kuo, Yen-Yu Chen, Yahru Cheng, Jr-Hung Li, Ching-Yu Chang, Tze-Liang Lee, Chi-Ming Yang
-
Publication number: 20250113576Abstract: Embodiments of the present disclosure provide semiconductor device structures and methods of forming the same. The structure includes a source/drain region disposed over a substrate, a gate electrode layer disposed over the substrate, a first gate spacer disposed between the gate electrode layer and the source/drain region, and a dielectric spacer disposed between the gate electrode layer and the source/drain region. A first portion of the dielectric spacer is in contact with a first portion of the first gate spacer. The structure further includes a sacrificial layer disposed between a second portion of the first gate spacer and a second portion of the dielectric spacer.Type: ApplicationFiled: September 29, 2023Publication date: April 3, 2025Inventors: Kuei-Yu KAO, Shih-Yao LIN, Chih-Chung CHIU, Chen-Chin LIAO, Chun-Yu LIN, Min-Chiao LIN, Yung-Chi CHANG, Li-Jung KUO
-
Publication number: 20250110307Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.Type: ApplicationFiled: December 12, 2024Publication date: April 3, 2025Inventors: Chao-Chang HU, Chih-Wei WENG, Chia-Che WU, Chien-Yu KAO, Hsiao-Hsin HU, He-Ling CHANG, Chao-Hsi WANG, Chen-Hsien FAN, Che-Wei CHANG, Mao-Gen JIAN, Sung-Mao TSAI, Wei-Jhe SHEN, Yung-Ping YANG, Sin-Hong LIN, Tzu-Yu CHANG, Sin-Jhong SONG, Shang-Yu HSU, Meng-Ting LIN, Shih-Wei HUNG, Yu-Huai LIAO, Mao-Kuo HSU, Hsueh-Ju LU, Ching-Chieh HUANG, Chih-Wen CHIANG, Yu-Chiao LO, Ying-Jen WANG, Shu-Shan CHEN, Che-Hsiang CHIU
-
Patent number: 12266594Abstract: A method of making a semiconductor device includes manufacturing a first transistor over a first side of a substrate. The method further includes depositing a spacer material against a sidewall of the first transistor. The method further includes recessing the spacer material to expose a first portion of the sidewall of the first transistor. The method further includes manufacturing a first electrical connection to the transistor, a first portion of the electrical connection contacts a surface of the first transistor farthest from the substrate, and a second portion of the electrical connect contacts the first portion of the sidewall of the first transistor. The method further includes manufacturing a self-aligned interconnect structure (SIS) extending along the spacer material, wherein the spacer material separates a portion of the SIS from the first transistor, and the first electrical connection directly contacts the SIS.Type: GrantFiled: November 22, 2023Date of Patent: April 1, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Chih-Yu Lai, Chih-Liang Chen, Chi-Yu Lu, Shang-Syuan Ciou, Hui-Zhong Zhuang, Ching-Wei Tsai, Shang-Wen Chang
-
Publication number: 20250107203Abstract: A device includes a substrate, an isolation structure over the substrate, a gate structure over the isolation structure, a gate spacer on a sidewall of the gate structure, a source/drain (S/D) region adjacent to the gate spacer, a silicide on the S/D region, a dielectric liner over a sidewall of the gate spacer and on a top surface of the isolation structure, wherein a bottom surface of the dielectric liner is above a top surface of the silicide layer and spaced away from the top surface of the silicide layer in a cross-sectional plane perpendicular to a lengthwise direction of the gate structure.Type: ApplicationFiled: December 9, 2024Publication date: March 27, 2025Inventors: Lin-Yu Huang, Li-Zhen Yu, Chia-Hao Chang, Cheng-Chi Chuang, Yu-Ming Lin, Chih-Hao Wang
-
Publication number: 20250107268Abstract: A plurality of holes in a top surface of a silicon medium form a plurality of sub-meta lenses to result in multiple focal points rather than a single point (resulting from using a single meta lens). As a result, optical paths for incoming light are reduced as compared with a single optical path associated with a single meta lens, which in turn reduces angular response of incident photons. Thus, a pixel sensor including the plurality of sub-meta lenses experiences improved light focus and greater signal-to-noise ratio. Additionally, dimensions of the pixel sensor are reduced (particularly a height of the pixel sensor), which allows for greater miniaturization of an image sensor that includes the pixel sensor.Type: ApplicationFiled: September 22, 2023Publication date: March 27, 2025Inventors: Yi-Hsuan WANG, Cheng Yu HUANG, Chun-Hao CHUANG, Keng-Yu CHOU, Wen-Hau WU, Wei-Chieh CHIANG, Chih-Kung CHANG
-
Patent number: 12261026Abstract: Methods for revitalizing components of a plasma processing apparatus that includes a sensor for detecting a thickness or roughness of a peeling weakness layer on a protective surface coating of a plasma processing tool and/or for detecting airborne contaminants generated by such peeling weakness layer. The method includes detecting detrimental amounts of peeling weakness layer buildup or airborne concentration of atoms or molecules from the peeling weakness layer, and initiating a revitalization process that bead beats the peeling weakness layer to remove it from the component while maintaining the integrity of the protective surface coating.Type: GrantFiled: March 31, 2021Date of Patent: March 25, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Chi-Hsing Lin, Chen-Fon Chang, Chun-Yi Wu, Shi-Yu Ke, Chih-Teng Liao
-
Publication number: 20250098343Abstract: Various embodiments of the present application are directed towards an image sensor including a wavelength tunable narrow band filter, as well as methods for forming the image sensor. In some embodiments, the image sensor includes a substrate, a first photodetector, a second photodetector, and a filter. The first and second photodetectors neighbor in the substrate. The filter overlies the first and second photodetectors and includes a first distributed Bragg reflector (DBR), a second DBR, and a first interlayer between the first and second DBRs. A thickness of the first interlayer has a first thickness value overlying the first photodetector and a second thickness value overlying the second photodetector. In some embodiments, the filter is limited to a single interlayer. In other embodiments the filter further includes a second interlayer defining columnar structures embedded in the first interlayer and having a different refractive index than the first interlayer.Type: ApplicationFiled: December 4, 2024Publication date: March 20, 2025Inventors: Cheng Yu Huang, Chun-Hao Chuang, Kazuaki Hashimoto, Keng-Yu Chou, Wei Chieh Chiang, Wen-Hau Wu, Chih-Kung Chang
-
Patent number: 12255070Abstract: In a semiconductor structure, a first conductive feature is formed in a trench by PVD and a glue layer is then deposited on the first conductive feature in the trench before CVD deposition of a second conductive feature there-over. The first conductive feature acts as a protection layer to keep silicide from being damaged by later deposition of metal or a precursor by CVD. The glue layer extends along the extent of the sidewall to enhance the adhesion of the second conductive features to the surrounding dielectric layer.Type: GrantFiled: September 30, 2021Date of Patent: March 18, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Min-Hsuan Lu, Kan-Ju Lin, Lin-Yu Huang, Sheng-Tsung Wang, Hung-Yi Huang, Chih-Wei Chang, Ming-Hsing Tsai, Chih-Hao Wang
-
Patent number: 12256550Abstract: A memory cell includes patterning a first trench extending through a first conductive line, depositing a memory film along sidewalls and a bottom surface of the first trench, depositing a channel layer over the memory film, the channel layer extending along the sidewalls and the bottom surface of the first trench, depositing a first dielectric layer over and contacting the channel layer to fill the first trench, patterning a first opening, wherein patterning the first opening comprises etching the first dielectric layer, depositing a gate dielectric layer in the first opening, and depositing a gate electrode over the gate dielectric layer and in the first opening, the gate electrode being surrounded by the gate dielectric layer.Type: GrantFiled: June 1, 2023Date of Patent: March 18, 2025Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Bo-Feng Young, Meng-Han Lin, Chih-Yu Chang, Sai-Hooi Yeong, Yu-Ming Lin
-
Publication number: 20250089328Abstract: Semiconductor devices and methods for forming the semiconductor devices using a cap layer are provided. The semiconductor devices include a plurality of semiconductor layers vertically separated from one another, a gate structure that comprises a lower portion and an upper portion, wherein the lower portion wraps around each of the plurality of semiconductor layers, and a gate spacer that extends along a sidewall of the upper portion of the gate structure. In some examples, a gap dimension measured between the gate spacer and an adjacent one of the plurality of semiconductor layers is sufficiently small such that the gate structure does not contact the source/drain structures. In some examples, the gate spacer and an adjacent one of the one or more semiconductor layers of the fin structure are separated by a cap layer.Type: ApplicationFiled: September 8, 2023Publication date: March 13, 2025Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Kuei-Yu Kao, Shih-Yao Lin, Chiung-Yu Cho, Chih-Han Lin, Ming-Ching Chang
-
Publication number: 20250074776Abstract: The present invention provides a method for preparing an activated carbon, which includes impregnating a carbonaceous material with carbonated water; and exposing the carbonaceous material to microwave radiation to produce the activated carbon.Type: ApplicationFiled: September 1, 2023Publication date: March 6, 2025Inventors: Feng-Huei LIN, Chih-Chieh CHEN, Chih-Wei LIN, Chi-Hsien CHEN, Yue-Liang GUO, Ching-Yun CHEN, Chia-Ting CHANG, Che-Yung KUAN, Zhi-Yu CHEN, I-Hsuan YANG
-
Publication number: 20250081730Abstract: A display may include an array of pixels such as light-emitting diode pixels. The pixels may include multiple circuitry decks that each include one or more circuit components such as transistors, capacitors, and/or resistors. The circuitry decks may be vertically stacked. Each circuitry deck may include a planarization layer formed from a siloxane material that conforms to underlying components and provides a planar upper surface. In this way, circuitry components may be vertically stacked to mitigate the size of each pixel footprint. The circuitry components may include capacitors that include both a high-k dielectric layer and a low-k dielectric layer. The display pixel may include a via with a width of less than 1 micron.Type: ApplicationFiled: June 26, 2024Publication date: March 6, 2025Inventors: Andrew Lin, Alper Ozgurluk, Chao Liang Chien, Cheuk Chi Lo, Chia-Yu Chen, Chien-Chung Wang, Chih Pang Chang, Chih-Hung Yu, Chih-Wei Chang, Chin Wei Hsu, ChinWei Hu, Chun-Kai Tzeng, Chun-Ming Tang, Chun-Yao Huang, Hung-Che Ting, Jung Yen Huang, Lungpao Hsin, Shih Chang Chang, Tien-Pei Chou, Wen Sheng Lo, Yu-Wen Liu, Yung Da Lai
-
Publication number: 20250081520Abstract: Embodiments with present disclosure provides a gate-all-around FET device including a patterned or lowered bottom dielectric layer. The bottom dielectric layer prevents the subsequently formed epitaxial source/drain region from volume loss and induces compressive strain in the channel region to prevent strain loss and channel resistance degradation.Type: ApplicationFiled: January 5, 2024Publication date: March 6, 2025Inventors: Chien-Chia Cheng, Che-Yu Lin, Chih-Chiang Chang, Ming-Hua Yu, Chii-Horng Li
-
Publication number: 20250077282Abstract: A digital compute-in-memory (DCIM) system includes a first DCIM macro. The first DCIM macro includes a first memory cell array and a first arithmetic logic unit (ALU). The first memory cell array has N rows that are configured to store weight data of a neural network in a single weight data download session, wherein N is a positive integer not smaller than two. The first ALU is configured to receive a first activation input, and perform convolution operations upon the first activation input and a single row of weight data selected from the N rows of the first memory cell array to generate first convolution outputs.Type: ApplicationFiled: August 30, 2024Publication date: March 6, 2025Applicant: MEDIATEK INC.Inventors: Ming-Hung Lin, Ming-En Shih, Shih-Wei Hsieh, Ping-Yuan Tsai, You-Yu Nian, Pei-Kuei Tsung, Jen-Wei Liang, Shu-Hsin Chang, En-Jui Chang, Chih-Wei Chen, Po-Hua Huang, Chung-Lun Huang