Patents by Inventor Chih-Yu Chang

Chih-Yu Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12062641
    Abstract: An integrated circuit includes a first semiconductor wafer, a second semiconductor wafer, a first interconnect structure, a first through substrate via, and an under bump metallurgy (UBM) layer. The first semiconductor wafer has a first side of the first semiconductor wafer. The second semiconductor wafer is coupled to the first semiconductor wafer, and is over the first semiconductor wafer. The second semiconductor wafer has a first device in a first side of the second semiconductor wafer. The first interconnect structure is on a second side of the first semiconductor wafer opposite from the first side of the first semiconductor wafer. The first interconnect structure includes an inductor below the first semiconductor wafer. The first through substrate via extends through the first semiconductor wafer. The first through substrate via electrically couples the inductor to at least the first device. The UBM layer is on a surface of the first interconnect structure.
    Type: Grant
    Filed: May 23, 2023
    Date of Patent: August 13, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih-Lin Chen, Hui-Yu Lee, Fong-Yuan Chang, Po-Hsiang Huang, Chin-Chou Liu
  • Publication number: 20240266209
    Abstract: A semiconductor device includes a fin extending from a substrate and including a first fin end, a separation structure separating the first fin end from an adjacent fin end of another fin, a dummy gate spacer along sidewalls of the separation structure and the fin, a first epitaxial source/drain region in the fin and adjacent the separation structure, and a residue of a dummy gate material in a corner region between the dummy gate spacer and the first fin end. The first fin end protrudes from the dummy gate spacer into the separation structure. The residue of the dummy gate material separates the first epitaxial source/drain region from the separation structure and is triangle shaped.
    Type: Application
    Filed: February 3, 2023
    Publication date: August 8, 2024
    Inventors: Chih-Han LIN, Kuei-Yu KAO, Shih-Yao LIN, Ke-Chia TSENG, Min Chiao LIN, Hsien-Chung HUANG, Chun-Hung CHEN, Guan Kai HUANG, Chao-Cheng CHEN, Chen-Ping CHEN, Ming-Ching CHANG
  • Publication number: 20240268128
    Abstract: Memory devices and methods of forming the memory devices are disclosed herein. The memory devices include a resistive memory array including a first resistive memory cell, a staircase contact structure adjacent the resistive memory array, and an inter-metal dielectric layer over the staircase contact structure. The memory devices further include a first diode and a second diode over the inter-metal dielectric layer. The memory devices further include a first conductive via electrically coupling the first diode to a first resistor of the first resistive memory cell and a second conductive via electrically coupling the second diode to a second resistor of the first resistive memory cell.
    Type: Application
    Filed: April 17, 2024
    Publication date: August 8, 2024
    Inventors: Meng-Han Lin, Chih-Yu Chang, Han-Jong Chia, Sai-Hooi Yeong, Yu-Ming Lin
  • Patent number: 12057397
    Abstract: The present disclosure describes a method for forming capping layers configured to prevent the migration of out-diffused cobalt atoms into upper metallization layers In some embodiments, the method includes depositing a cobalt diffusion barrier layer on a liner-free conductive structure that includes ruthenium, where depositing the cobalt diffusion barrier layer includes forming the cobalt diffusion barrier layer self-aligned to the liner-free conductive structure. The method also includes depositing, on the cobalt diffusion barrier layer, a stack with an etch stop layer and dielectric layer, and forming an opening in the stack to expose the cobalt diffusion barrier layer. Finally, the method includes forming a conductive structure on the cobalt diffusion barrier layer.
    Type: Grant
    Filed: December 5, 2022
    Date of Patent: August 6, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shuen-Shin Liang, Chun-I Tsai, Chih-Wei Chang, Chun-Hsien Huang, Hung-Yi Huang, Keng-Chu Lin, Ken-Yu Chang, Sung-Li Wang, Chia-Hung Chu, Hsu-Kai Chang
  • Patent number: 12057315
    Abstract: A method of forming a pattern in a photoresist layer includes forming a photoresist layer over a substrate, and reducing moisture or oxygen absorption characteristics of the photoresist layer. The photoresist layer is selectively exposed to actinic radiation to form a latent pattern, and the latent pattern is developed by applying a developer to the selectively exposed photoresist layer to form a pattern.
    Type: Grant
    Filed: May 31, 2023
    Date of Patent: August 6, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yi-Chen Kuo, Chih-Cheng Liu, Ming-Hui Weng, Jia-Lin Wei, Yen-Yu Chen, Jr-Hung Li, Yahru Cheng, Chi-Ming Yang, Tze-Liang Lee, Ching-Yu Chang
  • Patent number: 12057398
    Abstract: Semiconductor device and the manufacturing method thereof are disclosed herein. An exemplary semiconductor device comprises a fin disposed over a substrate, a gate structure disposed over a channel region of the fin, such that the gate structure traverses source/drain regions of the fin, a device-level interlayer dielectric (ILD) layer of a multi-layer interconnect structure disposed over the substrate, wherein the device-level ILD layer includes a first dielectric layer, a second dielectric layer disposed over the first dielectric layer, and a third dielectric layer disposed over the second dielectric layer, wherein a material of the third dielectric layer is different than a material of the second dielectric layer and a material of the first dielectric layer. The semiconductor device further comprises a gate contact to the gate structure disposed in the device-level ILD layer and a source/drain contact to the source/drain regions disposed in the device-level ILD layer.
    Type: Grant
    Filed: July 22, 2022
    Date of Patent: August 6, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Lin-Yu Huang, Sheng-Tsung Wang, Jia-Chuan You, Chia-Hao Chang, Tien-Lu Lin, Yu-Ming Lin, Chih-Hao Wang
  • Publication number: 20240250017
    Abstract: A semiconductor device structure, along with methods of forming such, are described. The semiconductor device structure includes a device, a first dielectric material disposed over the device, and an opening is formed in the first dielectric material. The semiconductor device structure further includes a conductive structure disposed in the opening, and the conductive structure includes a first sidewall. The semiconductor device structure further includes a surrounding structure disposed in the opening, and the surrounding structure surrounds the first sidewall of the conductive structure. The surrounding structure includes a first spacer layer and a second spacer layer adjacent the first spacer layer. The first spacer layer is separated from the second spacer layer by an air gap.
    Type: Application
    Filed: March 14, 2024
    Publication date: July 25, 2024
    Inventors: Lin-Yu HUANG, Li-Zhen YU, Chia-Hao CHANG, Cheng-Chi CHUANG, Kuan-Lun CHENG, Chih-Hao WANG
  • Publication number: 20240250151
    Abstract: Semiconductor devices and methods of forming the same are provided. A semiconductor device according to one embodiment includes an active region including a channel region and a source/drain region adjacent the channel region, a gate structure over the channel region of the active region, a source/drain contact over the source/drain region, a dielectric feature over the gate structure and including a lower portion adjacent the gate structure and an upper portion away from the gate structure, and an air gap disposed between the gate structure and the source/drain contact. A first width of the upper portion of the dielectric feature along a first direction is greater than a second width of the lower portion of the dielectric feature along the first direction. The air gap is disposed below the upper portion of the dielectric feature.
    Type: Application
    Filed: April 5, 2024
    Publication date: July 25, 2024
    Inventors: Chia-Hao Chang, Lin-Yu Huang, Sheng-Tsung Wang, Cheng-Chi Chuang, Yu-Ming Lin, Chih-Hao Wang
  • Patent number: 12046507
    Abstract: A semiconductor device structure, along with methods of forming such, are described. The semiconductor device structure includes a device, a conductive structure disposed over the device, and the conductive structure includes a sidewall having a first portion and a second portion. The semiconductor device structure further includes a first spacer layer including a third portion and a fourth portion, the third portion surrounds the first portion of the sidewall, and the fourth portion is disposed on the conductive structure. The semiconductor device structure further includes a first dielectric material surrounding the third portion, and an air gap is formed between the first dielectric material and the third portion of the first spacer layer. The first dielectric material includes a first material different than a second material of the first spacer layer, and the first dielectric material is substantially coplanar with the fourth portion of the first spacer layer.
    Type: Grant
    Filed: July 27, 2022
    Date of Patent: July 23, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Lin-Yu Huang, Li-Zhen Yu, Chia-Hao Chang, Cheng-Chi Chuang, Kuan-Lun Cheng, Chih-Hao Wang
  • Patent number: 12040273
    Abstract: Semiconductor device and the manufacturing method thereof are disclosed herein. An exemplary semiconductor device comprises a fin disposed over a substrate, a gate structure disposed over a channel region of the fin, such that the gate structure traverses source/drain regions of the fin, a device-level interlayer dielectric (ILD) layer of a multi-layer interconnect structure disposed over the substrate, wherein the device-level ILD layer includes a first dielectric layer, a second dielectric layer disposed over the first dielectric layer, and a third dielectric layer disposed over the second dielectric layer, wherein a material of the third dielectric layer is different than a material of the second dielectric layer and a material of the first dielectric layer. The semiconductor device further comprises a gate contact to the gate structure disposed in the device-level ILD layer and a source/drain contact to the source/drain regions disposed in the device-level ILD layer.
    Type: Grant
    Filed: October 18, 2022
    Date of Patent: July 16, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Lin-Yu Huang, Sheng-Tsung Wang, Jia-Chuan You, Chia-Hao Chang, Tien-Lu Lin, Yu-Ming Lin, Chih-Hao Wang
  • Patent number: 12040036
    Abstract: The present disclosure describes a magnetic memory device. The magnetic memory device includes a magnetic sensing array configured to sense an external magnetic field strength. The magnetic memory device further includes a voltage modulator configured to, in response to the external magnetic field strength being greater than a threshold magnetic field strength, provide a test voltage different from a current write voltage of the magnetic memory device. The magnetic memory device further includes an error check array configured to use the test voltage as a write voltage of the error check array and provide a bit error rate corresponding to the test voltage. The magnetic memory device further includes a control unit configured to adjust, based on the bit error rate being equal to or less than a threshold bit error rate, a write voltage of the magnetic memory device from the current write voltage to the test voltage.
    Type: Grant
    Filed: July 31, 2023
    Date of Patent: July 16, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Hsiang Chen, Chih-Yang Chang, Chia Yu Wang, Meng-Chun Shih
  • Patent number: 12040387
    Abstract: Circuit devices and methods of forming the same are provided. In one embodiment, a method includes receiving a workpiece that includes a substrate and a fin extending from the substrate, forming a first ferroelectric layer on the fin, forming a dummy gate structure over a channel region of the fin, forming a gate spacer over sidewalls of the dummy gate structure, forming an inter-level dielectric layer over the workpiece, removing the dummy gate structure to expose the first ferroelectric layer over the channel region of the fin, and forming a gate electrode over the exposed first ferroelectric layer over the channel region of the fin.
    Type: Grant
    Filed: July 25, 2023
    Date of Patent: July 16, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Bo-Feng Young, Chih-Yu Chang, Sai-Hooi Yeong, Chi On Chui, Chih-Hao Wang
  • Publication number: 20240213367
    Abstract: The present disclosure relates a ferroelectric field-effect transistor (FeFET) device. In some embodiments, the FeFET device includes a ferroelectric layer having a first side and a second side opposite to the first side and a gate electrode disposed along the first side of the ferroelectric layer. The FeFET device further includes an OS channel layer disposed along the second side of the ferroelectric layer opposite to the first side and a pair of source/drain regions disposed on opposite sides of the OS channel layer. The FeFET device further includes a 2D contacting layer disposed along the OS channel layer. The OS channel layer has a first doping type, and the 2D contacting layer has a second doping type different than the first doping type.
    Type: Application
    Filed: March 7, 2024
    Publication date: June 27, 2024
    Inventors: Mauricio Manfrini, Chih-Yu Chang, Sai-Hooi Yeong
  • Publication number: 20240206185
    Abstract: The present disclosure relates to an integrated chip device. The integrated chip device includes a plurality of conductive lines disposed over a substrate. The plurality of conductive lines are stacked onto one another and are separated from one another by dielectric layers interleaved between adjacent ones of the plurality of conductive lines. A ferroelectric layer is along sidewalls of the plurality of conductive lines and the dielectric layers. The ferroelectric layer separates a channel layer from the plurality of conductive lines. A species is disposed within the ferroelectric layer. The species has a concentration that decreases from the channel layer towards a surface of the ferroelectric layer that faces away from the channel layer.
    Type: Application
    Filed: February 29, 2024
    Publication date: June 20, 2024
    Inventors: Chun-Chieh Lu, Sai-Hooi Yeong, Bo-Feng Young, Yu-Ming Lin, Chih-Yu Chang
  • Publication number: 20240186414
    Abstract: The present disclosure relates to a semiconductor device includes a substrate and first and second spacers on the substrate. The semiconductor device includes a gate stack between the first and second spacers. The gate stack includes a gate dielectric layer having a first portion formed on the substrate and a second portion formed on the first and second spacers. The first portion includes a crystalline material and the second portion comprises an amorphous material. The gate stack further includes a gate electrode on the first and second portions of the gate dielectric layer.
    Type: Application
    Filed: January 2, 2024
    Publication date: June 6, 2024
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Ming LIN, Sai-Hooi YEONG, Ziwei FANG, Bo-Feng YOUNG, Chi On CHUI, Chih-Yu CHANG, Huang-Lin CHAO
  • Patent number: 11997854
    Abstract: The present disclosure provides a method for manufacturing a semiconductor structure. The method includes: receiving a substrate; forming a transistor surrounded by a dielectric layer over the substrate, wherein the dielectric layer includes a through hole, and the transistor is formed in the through hole; forming a gate contact in the through hole to electrically connect the transistor; forming a ferroelectric layer over the gate contact in the through hole; forming an insulating layer conformal to and over the dielectric layer and the ferroelectric layer; removing a portion of the insulating layer to form a spacer in the through hole and over the ferroelectric layer; and forming a top electrode over the ferroelectric layer and between the spacer.
    Type: Grant
    Filed: May 20, 2022
    Date of Patent: May 28, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chih-Yu Chang, Sai-Hooi Yeong, Yu-Ming Lin, Chih-Hao Wang
  • Publication number: 20240172433
    Abstract: A method for fabricating a three-dimensional memories is provided. A stack with multiple levels is formed, and each of the levels includes an isolation layer, a metal layer, and a semiconductor layer between the isolation layer and the metal layer. A first trench and a plurality of second trenches are formed along each parallel line in the stack of the levels. The isolation layers and the metal layers in the parallel lines are removed through the first trench and the second trenches, so as to expose the semiconductor layers in the parallel line. A plurality of memory cells are formed in the parallel lines of the levels. In each of the levels, each of the memory cells includes a transistor and a channel of the transistor is formed by the semiconductor layer in the parallel line.
    Type: Application
    Filed: February 1, 2024
    Publication date: May 23, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Bo-Feng YOUNG, Sai-Hooi YEONG, Chih-Yu CHANG, Han-Jong CHIA, Chenchen Jacob WANG, Yu-Ming LIN
  • Patent number: 11989077
    Abstract: A management circuit is coupled to multiple processor cores for performing current suppression. The management circuit includes a detection circuit and a throttle signal generator. The detection circuit is operative to receive an activity signal from each processor core, and estimate a total current consumed by the plurality of processor cores based on activity signals. The activity signal indicates a current index proportional to current consumption of the processor core in a given time period. The throttle signal generator is operative to assert or de-assert throttle signals to the processor cores, one processor core at a time, based on one or more metrics calculated from the total current.
    Type: Grant
    Filed: July 16, 2022
    Date of Patent: May 21, 2024
    Assignee: MediaTek Inc.
    Inventors: Hung-Wei Wu, Chih-Yu Chang
  • Patent number: 11991888
    Abstract: Memory devices and methods of forming the memory devices are disclosed herein. The memory devices include a resistive memory array including a first resistive memory cell, a staircase contact structure adjacent the resistive memory array, and an inter-metal dielectric layer over the staircase contact structure. The memory devices further include a first diode and a second diode over the inter-metal dielectric layer. The memory devices further include a first conductive via electrically coupling the first diode to a first resistor of the first resistive memory cell and a second conductive via electrically coupling the second diode to a second resistor of the first resistive memory cell.
    Type: Grant
    Filed: June 29, 2023
    Date of Patent: May 21, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Meng-Han Lin, Chih-Yu Chang, Han-Jong Chia, Sai-Hooi Yeong, Yu-Ming Lin
  • Patent number: D1037249
    Type: Grant
    Filed: November 7, 2023
    Date of Patent: July 30, 2024
    Assignee: HTC Corporation
    Inventors: Shu-Kuen Chang, Natalia Amijo, Ian James McGillivray, Chin-Wei Chou, Yi-Shen Wang, Chih-Sung Fang, Hung-Yu Chen