Patents by Inventor Ching-Sung Yang

Ching-Sung Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170053708
    Abstract: The invention provides a code generating apparatus and an OTP memory block. The code generating apparatus of present disclosure includes a plurality of first one time programming (OTP) memory cells, a reference signal provider and a sense amplifier. The first OTP memory cells are coupled to a first bit line. The reference signal provider provides a reference signal. Wherein, at least one of the first OTP memory cells provides a read current to the first bit line, and the sense amplifier compares the read current and the reference signal to generate an output code. A current value of the reference signal is set within a range, and the range is set by the bit current corresponding to a maximum bit count, such as that the output code is determined by a manufacturing variation of the at least one first OTP memory cell.
    Type: Application
    Filed: May 27, 2016
    Publication date: February 23, 2017
    Inventors: Wei-Zhe Wong, Ching-Sung Yang, Ching-Hsiang Hsu
  • Patent number: 9466392
    Abstract: A memory array includes a first memory page and a second memory page. The first memory page includes a first word line, a first select gate line, a first control line, a first erase line, and a plurality of first memory cells each coupled to the first word line, the first select gate line, the first control line, and the first erase line, and for receiving a bit line signal and a source line signal. The second memory page includes a second control line, a second erase line, and a plurality of second memory cells each coupled to the first word line, the first select gate line, the second control line, and the second erase line, and for receiving a bit line signal and a source line signal.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: October 11, 2016
    Assignee: eMemory Technology Inc.
    Inventors: Wei-Chen Chang, Wen-Hao Ching, Chih-Hsin Chen, Shih-Chen Wang, Ching-Sung Yang
  • Publication number: 20160148686
    Abstract: A memory cell array includes a first bit line, a first word line, a first source line pair and a first memory cell. A select terminal of the first memory cell is connected with the first word line. A first control terminal of the first memory cell is connected with a first source line of the first source line pair. A second control terminal of the first memory cell is connected with a second source line of the first source line pair. A third control terminal of the first memory cell is connected with the first bit line.
    Type: Application
    Filed: October 7, 2015
    Publication date: May 26, 2016
    Inventors: Chia-Jung Hsu, Wein-Town Sun, Ching-Sung Yang, Chi-Yi Shao, Chun-Yuan Lo, Yu-Hsiung Tsai, Ching-Yuan Lin
  • Publication number: 20160123775
    Abstract: An integrated capacitance sensing module includes a silicon substrate, a first and a second and a third interlayer dielectric layers, plural conducting layers, a shielding layer, a lower and a upper sensing electrode layers, a protective coating layer. An embedded memory and a sensing circuit are constructed in the silicon substrate. The first interlayer dielectric layer covers the silicon substrate. The plural conducting layers are formed over the first interlayer dielectric layer. The shielding layer is formed over the plural conducting layers. The second interlayer dielectric layer covers the shielding layer. The lower sensing electrode layer is formed over the second interlayer dielectric layer. The third interlayer dielectric layer is formed over the lower sensing electrode layer. The upper sensing electrode layer is formed over the third interlayer dielectric layer. The protective coating layer covers the upper sensing electrode layer.
    Type: Application
    Filed: June 3, 2015
    Publication date: May 5, 2016
    Inventors: Wei-Ren Chen, Wen-Hao Lee, Hsin-Chou Liu, Ching-Sung Yang
  • Publication number: 20160104537
    Abstract: A memory array includes a first memory page and a second memory page. The first memory page includes a first word line, a first select gate line, a first control line, a first erase line, and a plurality of first memory cells each coupled to the first word line, the first select gate line, the first control line, and the first erase line, and for receiving a bit line signal and a source line signal. The second memory page includes a second control line, a second erase line, and a plurality of second memory cells each coupled to the first word line, the first select gate line, the second control line, and the second erase line, and for receiving a bit line signal and a source line signal.
    Type: Application
    Filed: October 13, 2015
    Publication date: April 14, 2016
    Inventors: Wei-Chen Chang, Wen-Hao Ching, Chih-Hsin Chen, Shih-Chen Wang, Ching-Sung Yang
  • Patent number: 9214242
    Abstract: In a programming method for a NAND flash memory device, a self-boosting scheme is used to eliminate excess electrons in the channel of an inhibit cell string that would otherwise cause programming disturb. The elimination is enabled by applying a negative voltage to word lines connected to the inhibit cell string before boosting the channel, and this leads to bringing high program immunity. A row decoder circuitry to achieve the programming operation and a file system architecture based on the programming scheme to improve the efficiency of file management are also described.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: December 15, 2015
    Assignees: POWERCHIP CORPORATION, POWERCHIP TECHNOLOGY CORPORATION
    Inventors: Takashi Miida, Riichiro Shirota, Hideki Arakawa, Ching Sung Yang, Tzung Ling Lin
  • Publication number: 20150048875
    Abstract: A high voltage power control system comprises a microcontroller unit, an embedded non-volatile memory, and a high voltage driver. The micro controller unit is configured to control high voltage outputs of the high voltage power control system. The embedded non-volatile memory is electrically connected to the micro controller. The high voltage driver is electrically connected to the micro controller and is configured to output the high voltage outputs of the high voltage power control system. The high voltage power control system is compatible with a logic process while the embedded non-volatile memory and the high voltage power control system can still support operations of high voltage.
    Type: Application
    Filed: June 12, 2014
    Publication date: February 19, 2015
    Inventors: Ching-Sung Yang, Tung-Cheng Kuo
  • Patent number: 8941167
    Abstract: An erasable programmable single-poly nonvolatile memory includes a first PMOS transistor comprising a select gate, a first p-type doped region, and a second p-type doped region, wherein the select gate is connected to a select gate voltage, and the first p-type doped region is connected to a source line voltage; a second PMOS transistor comprising the second p-type doped region, a third p-type doped region, and a floating gate, wherein the third p-type doped region is connected to a bit line voltage; and an erase gate region adjacent to the floating gate, wherein the erase gate region is connected to an erase line voltage.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: January 27, 2015
    Assignee: Ememory Technology Inc.
    Inventors: Wei-Ren Chen, Te-Hsun Hsu, Shih-Chen Wang, Hsin-Ming Chen, Ching-Sung Yang
  • Publication number: 20140140129
    Abstract: In a programming method for a NAND flash memory device, a self-boosting scheme is used to eliminate excess electrons in the channel of an inhibit cell string that would otherwise cause programming disturb. The elimination is enabled by applying a negative voltage to word lines connected to the inhibit cell string before boosting the channel, and this leads to bringing high program immunity. A row decoder circuitry to achieve the programming operation and a file system architecture based on the programming scheme to improve the efficiency of file management are also described.
    Type: Application
    Filed: November 15, 2013
    Publication date: May 22, 2014
    Applicants: Powerchip Technology Corporation, Powerchip Corporation
    Inventors: Takashi MIIDA, Riichiro SHIROTA, Hideki ARAKAWA, Ching Sung YANG, Tzung Ling LIN
  • Patent number: 8724363
    Abstract: An anti-fuse memory with coupling channel is provided. The anti-fuse memory includes a substrate of a first conductive type, a doped region of a second conductive type, a coupling gate, a gate dielectric layer, an anti-fuse gate, and an anti-fuse layer. The substrate has an isolation structure. The doped region is disposed in the substrate. A channel region is defined between the doped region and the isolation structure. The coupling gate is disposed on the substrate between the doped region and the isolation structure. The coupling gate is adjacent to the doped region. The gate dielectric layer is disposed between the coupling gate and the substrate. The anti-fuse gate is disposed on the substrate between the coupling gate and the isolation structure. The anti-fuse gate and the coupling gate have a space therebetween. The anti-fuse layer is disposed between the anti-fuse gate and the substrate.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: May 13, 2014
    Assignee: eMemory Technology Inc.
    Inventors: Hau-Yan Lu, Hsin-Ming Chen, Ching-Sung Yang
  • Patent number: 8705289
    Abstract: A flash memory apparatus is provided. The flash memory apparatus includes a plurality of memory cells and a plurality of programming voltage control generators. Each of the memory cells receives a programming control voltage through a control end thereof, and executes data programming operation according to the programming control voltages. Each of the programming voltage control generators includes a pre-charge voltage transmitter and a pumping capacitor. The pre-charge voltage transmitter provides pre-charge voltage to the end of each of the corresponding memory cells according to pre-charge enable signal during a first period. A pumping voltage is provided to the pumping capacitor during a second period, and the programming control voltage is generated at the control end of each of the memory cells.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: April 22, 2014
    Assignee: eMemory Technology Inc.
    Inventors: Ching-Sung Yang, Wen-Hao Ching, Wei-Ming Ku, Yung-Hsiang Chen, Shih-Chen Wang, Hsin-Ming Chen
  • Patent number: 8681528
    Abstract: A one-bit memory cell for a nonvolatile memory includes a bit line and a plurality of serially-connected storage units. The bit line is connected to the serially-connected storage units. Each storage unit includes a first doped region, a second doped region and a third doped region, which are formed in a surface of a substrate. A first gate structure is disposed over a first channel region between the first doped region and the second doped region. The first gate structure is connected to a control signal line. A second gate structure is disposed over a second channel region between the second doped region and the third doped region. The second gate structure is connected to an anti-fuse signal line.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: March 25, 2014
    Assignee: eMemory Technology Inc.
    Inventors: Meng-Yi Wu, Yueh-Chia Wen, Hsin-Ming Chen, Ching-Sung Yang
  • Publication number: 20140056051
    Abstract: A one-bit memory cell for a nonvolatile memory includes a bit line and a plurality of serially-connected storage units. The bit line is connected to the serially-connected storage units. Each storage unit includes a first doped region, a second doped region and a third doped region, which are formed in a surface of a substrate. A first gate structure is disposed over a first channel region between the first doped region and the second doped region. The first gate structure is connected to a control signal line. A second gate structure is disposed over a second channel region between the second doped region and the third doped region. The second gate structure is connected to an anti-fuse signal line.
    Type: Application
    Filed: August 21, 2012
    Publication date: February 27, 2014
    Applicant: eMemory Technology Inc.
    Inventors: Meng-Yi Wu, Yueh-Chia Wen, Hsin-Ming Chen, Ching-Sung Yang
  • Patent number: 8638589
    Abstract: An operating method for a memory unit is provided, wherein the memory unit includes a well region, a select gate, a first gate, a second gate, an oxide nitride spacer, a first diffusion region, and a second diffusion region. The operating method for the memory unit comprises the following steps. During a programming operation, a breakdown voltage is coupled to the second diffusion region through a first channel region formed under the select gate. A programming voltage is sequentially or simultaneously applied to the first gate and the second gate to rupture a first oxide layer and a second oxide layer, wherein the first oxide layer is disposed between the first gate and the well region, and the second oxide layer is disposed between the second gate and the well region.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: January 28, 2014
    Assignee: eMemory Technology Inc.
    Inventors: Hau-Yan Lu, Hsin-Ming Chen, Ching-Sung Yang
  • Patent number: 8625350
    Abstract: A non-volatile memory system includes one or more non-volatile memory cells. Each non-volatile memory cell provides a floating gate, a coupling device, a first floating gate transistor, and a second floating gate transistor. The coupling device is located in a first conductivity region. The first floating gate transistor is located in a second conductivity region, and supplies read current sensed during a read operation. The second floating gate transistor is located in a third conductivity region. Such non-volatile memory cell further provides two transistors for injecting negative charge into the floating gate during a programming operation, and removing negative charge from the second floating gate transistor during an erase operation. The floating gate is shared by the first floating gate transistor, the coupling device, and the second floating gate transistor, and extends over active regions of the first floating gate transistor, the coupling device and the second floating gate transistor.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: January 7, 2014
    Assignee: eMemory Technology Inc.
    Inventors: Wen-Hao Ching, Shih-Chen Wang, Ching-Sung Yang
  • Patent number: 8604538
    Abstract: A non-volatile semiconductor memory device includes a substrate, a first gate formed on a first region of a surface of the substrate, a second gate formed on a second region of the surface of the substrate, a charge storage layer filled between the first gate and the second gate, a first diffusion region formed on a first side of the charge storage layer, and a second diffusion region formed opposite the charge storage layer from the first diffusion region. The first region and the second region are separated by a distance sufficient for forming a self-aligning charge storage layer therebetween.
    Type: Grant
    Filed: December 24, 2012
    Date of Patent: December 10, 2013
    Assignee: eMemory Technology Inc.
    Inventors: Hau-Yan Lu, Shih-Chen Wang, Ching-Sung Yang
  • Patent number: 8599614
    Abstract: In a programming method for a NAND flash memory device, a self-boosting scheme is used to eliminate excess electrons in the channel of an inhibit cell string that would otherwise cause programming disturb. The elimination is enabled by applying a negative voltage to word lines connected to the inhibit cell string before boosting the channel, and this leads to bringing high program immunity. A row decoder circuitry to achieve the programming operation and a file system architecture based on the programming scheme to improve the efficiency of file management are also described.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: December 3, 2013
    Assignees: Powerchip Corporation, Powerchip Technology Corporation
    Inventors: Takashi Miida, Riichiro Shirota, Hideki Arakawa, Ching Sung Yang, Tzung Ling Lin
  • Patent number: 8592886
    Abstract: An erasable programmable single-poly nonvolatile memory includes a floating gate transistor having a floating gate, a gate oxide layer under the floating gate, and a channel region; and an erase gate region, wherein the floating gate is extended to and is adjacent to the erase gate region. The gate oxide layer comprises a first portion above the channel region of the floating gate transistor and a second portion above the erase gate region, and a thickness of the first portion of the gate oxide layer is different from a thickness of the second portion of the gate oxide layer.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: November 26, 2013
    Assignee: Ememory Technology Inc.
    Inventors: Te-Hsun Hsu, Hsin-Ming Chen, Ching-Sung Yang, Wen-Hao Ching, Wei-Ren Chen
  • Publication number: 20130234227
    Abstract: An erasable programmable single-poly nonvolatile memory includes a first PMOS transistor comprising a select gate, a first p-type doped region, and a second p-type doped region, wherein the select gate is connected to a select gate voltage, and the first p-type doped region is connected to a source line voltage; a second PMOS transistor comprising the second p-type doped region, a third p-type doped region, and a floating gate, wherein the third p-type doped region is connected to a bit line voltage; and an erase gate region adjacent to the floating gate, wherein the erase gate region is connected to an erase line voltage.
    Type: Application
    Filed: March 8, 2012
    Publication date: September 12, 2013
    Applicant: eMemory Technology Inc.
    Inventors: Wei-Ren Chen, Te-Hsun Hsu, Shih-Chen Wang, Hsin-Ming Chen, Ching-Sung Yang
  • Publication number: 20130234228
    Abstract: An erasable programmable single-poly nonvolatile memory includes a floating gate transistor having a floating gate, a gate oxide layer under the floating gate, and a channel region; and an erase gate region, wherein the floating gate is extended to and is adjacent to the erase gate region. The gate oxide layer comprises a first portion above the channel region of the floating gate transistor and a second portion above the erase gate region, and a thickness of the first portion of the gate oxide layer is different from a thickness of the second portion of the gate oxide layer.
    Type: Application
    Filed: August 13, 2012
    Publication date: September 12, 2013
    Applicant: eMemory Technology Inc.
    Inventors: Te-Hsun Hsu, Hsin-Ming Chen, Ching-Sung Yang, Wen-Hao Ching, Wei-Ren Chen