Patents by Inventor Christian Jäger

Christian Jäger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9647100
    Abstract: A semiconductor device includes transistor cells formed along a first surface at a front side of a semiconductor body in a transistor cell area. A drift zone structure forms first pn junctions with body zones of the transistor cells. An auxiliary structure between the drift zone structure and a second surface at a rear side of the semiconductor body includes a first portion that contains deep level dopants requiring at least 150 meV to ionize. A collector structure directly adjoins the auxiliary structure. An injection efficiency of minority carriers from the collector structure into the drift zone structure varies along a direction parallel to the first surface at least in the transistor cell area.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: May 9, 2017
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Schulze, Christian Jaeger, Franz Josef Niedernostheide, Roman Baburske, Andre Rainer Stegner, Antonio Vellei
  • Patent number: 9576944
    Abstract: A semiconductor device includes a first load terminal electrically coupled to a source zone of a transistor cell. A gate terminal is electrically coupled to a gate electrode which is capacitively coupled to a body zone of the transistor cell. The source and body zones are formed in a semiconductor portion. A thermoresistive element is thermally connected to the semiconductor portion and is electrically coupled between the gate terminal and the first load terminal. Above a maximum operation temperature specified for the semiconductor device, an electric resistance of the thermoresistive element decreases by at least two orders of magnitude within a critical temperature span of at most 50 Kelvin.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: February 21, 2017
    Assignee: Infineon Technologies AG
    Inventors: Johannes Georg Laven, Christian Jaeger, Joachim Mahler, Daniel Pedone, Anton Prueckl, Hans-Joachim Schulze, Andre Schwagmann, Patrick Schwarz
  • Patent number: 9543398
    Abstract: A semiconductor switching device includes a first load terminal electrically connected to source zones of transistor cells. The source zones form first pn junctions with body zones. A second load terminal is electrically connected to a drain construction that forms second pn junctions with the body zones. Control structures, which include a control electrode and charge storage structures, directly adjoin the body zones. The control electrode controls a load current through the body zones. The charge storage structures insulate the control electrode from the body zones and contain a control charge adapted to induce inversion channels in the body zones in the absence of a potential difference between the control electrode and the first load electrode.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: January 10, 2017
    Assignee: Infineon Technologies AG
    Inventors: Johannes Georg Laven, Anton Mauder, Matteo Dainese, Franz Hirler, Christian Jaeger, Maximilian Roesch, Wolfgang Roesner, Martin Stiftinger, Robert Strenz
  • Publication number: 20160284803
    Abstract: Disclosed is a bipolar semiconductor device, comprising a semiconductor body having a first surface; and a base region of a first doping type and a first emitter region in the semiconductor body, wherein the first emitter region adjoins the first surface and comprises a plurality of first type emitter regions of a second doping type complementary to the first doping type, a plurality of second type emitter regions of the second doping type, a plurality of third type emitter regions of the first doping type, and a recombination region comprising recombination centers, wherein the first type emitter regions and the second type emitter regions extend from the first surface into the semiconductor body, wherein the first type emitter regions have a higher doping concentration and extend deeper into the semiconductor body from the first surface than the second type emitter regions, wherein the third type emitter regions adjoin the first type emitter regions and the second type emitter regions, and wherein the recom
    Type: Application
    Filed: March 25, 2016
    Publication date: September 29, 2016
    Inventors: Roman Baburske, Christian Jaeger, Franz Josef Niedernostheide, Hans-Joachim Schulze, Antonio Vellei
  • Publication number: 20160190123
    Abstract: A semiconductor device includes transistor cells and enhancement cells. Each transistor cell includes a body zone that forms a first pn junction with a drift structure. The transistor cells may form, in the body zones, inversion channels when a first control signal exceeds a first threshold. The inversion channels form part of a connection between the drift structure and a first load electrode. A delay unit generates a second control signal which trailing edge is delayed with respect to a trailing edge of the first control signal. The enhancement cells form inversion layers in the drift structure when the second control signal falls below a second threshold lower than the first threshold. The inversion layers are effective as minority charge carrier emitters.
    Type: Application
    Filed: December 19, 2015
    Publication date: June 30, 2016
    Inventors: Johannes Georg Laven, Roman Baburske, Matteo Dainese, Christian Jaeger
  • Publication number: 20160163689
    Abstract: A semiconductor device includes a first load terminal electrically coupled to a source zone of a transistor cell. A gate terminal is electrically coupled to a gate electrode which is capacitively coupled to a body zone of the transistor cell. The source and body zones are formed in a semiconductor portion. A thermoresistive element is thermally connected to the semiconductor portion and is electrically coupled between the gate terminal and the first load terminal. Above a maximum operation temperature specified for the semiconductor device, an electric resistance of the thermoresistive element decreases by at least two orders of magnitude within a critical temperature span of at most 50 Kelvin.
    Type: Application
    Filed: December 4, 2015
    Publication date: June 9, 2016
    Inventors: Johannes Georg Laven, Christian Jaeger, Joachim Mahler, Daniel Pedone, Anton Prueckl, Hans-Joachim Schulze, Andre Schwagmann, Patrick Schwarz
  • Publication number: 20160118382
    Abstract: A reverse blocking semiconductor device is manufactured by introducing impurities of a first conductivity type into a semiconductor substrate of the first conductivity type through a process surface to obtain a process layer extending into the semiconductor substrate up to a first depth, and introducing impurities of a second, complementary conductivity type into the semiconductor substrate through openings of an impurity mask provided on the process surface to obtain emitter zones of the second conductivity type extending up to a second depth deeper than the first depth and channels of the first conductivity type between the emitter zones. Exposed portions of the process layer are removed above the emitter zones.
    Type: Application
    Filed: December 31, 2015
    Publication date: April 28, 2016
    Inventors: Johannes Georg Laven, Roman Baburske, Christian Jaeger, Hans-Joachim Schulze
  • Publication number: 20160099188
    Abstract: A semiconductor device includes semiconductor body region and a surface region, the semiconductor body region including a first conductivity type first semiconductor region type and a second conductivity type second semiconductor region.
    Type: Application
    Filed: September 22, 2015
    Publication date: April 7, 2016
    Inventors: Christian Jaeger, Johannes Georg Laven, Frank Dieter Pfirsch, Alexander Philippou
  • Publication number: 20160088840
    Abstract: The present invention relates to a plant strengthener in the form of a formulation comprising tocopherol or a derivative of a tocopherol, and to the use thereof for increasing the tolerance of crop plants to stress events, in particular to chemically induced stress, cold-induced stress, drought-induced stress or light-induced stress. The plant strengtheners are present in the form of formulations which comprise the following components A, B and C: a) at least one tocopherol or derivative of a tocopherol (component A); b) at least one nonionic emulsifier (component B); and c) at least one water-soluble boron compound (component C), and, if appropriate, d) one or more UV absorbers (component D) and e) one or more organic solvents.
    Type: Application
    Filed: May 16, 2014
    Publication date: March 31, 2016
    Applicant: COMPO EXPERT GMBH
    Inventors: Georg Ebert, Christian Jaeger
  • Publication number: 20160087005
    Abstract: A semiconductor device includes a semiconductor body including a drift zone that forms a pn junction with an emitter region. A first load electrode is at a front side of the semiconductor body. A second load electrode is at a rear side of the semiconductor body opposite to the front side. One or more variable resistive elements are electrically connected in a controlled path between the drift zone and one of the first and second load electrodes. The variable resistive elements activate and deactivate electronic elements of the semiconductor device in response to a change of the operational state of the semiconductor device.
    Type: Application
    Filed: September 17, 2015
    Publication date: March 24, 2016
    Inventors: Alexander Philippou, Christian Jaeger, Johannes Georg Laven, Frank Dieter Pfirsch
  • Publication number: 20160056251
    Abstract: A semiconductor switching device includes a first load terminal electrically connected to source zones of transistor cells. The source zones form first pn junctions with body zones. A second load terminal is electrically connected to a drain construction that forms second pn junctions with the body zones. Control structures, which include a control electrode and charge storage structures, directly adjoin the body zones. The control electrode controls a load current through the body zones. The charge storage structures insulate the control electrode from the body zones and contain a control charge adapted to induce inversion channels in the body zones in the absence of a potential difference between the control electrode and the first load electrode.
    Type: Application
    Filed: July 31, 2015
    Publication date: February 25, 2016
    Inventors: Johannes Georg Laven, Anton Mauder, Matteo Dainese, Franz Hirler, Christian Jaeger, Maximillian Roesch, Wolfgang Roesner, Martin Stiftinger, Robert Strenz
  • Patent number: 9245984
    Abstract: A reverse blocking semiconductor device includes a base region of a first conductivity type and a body region of a second, complementary conductivity type, wherein the base and body regions form a pn junction. Between the base region and a collector electrode an emitter layer is arranged that includes emitter zones of the second conductivity type and at least one channel of the first conductivity type. The channels extend through the emitter layer between the base region and the collector electrode and reduce the leakage current in a forward blocking state.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: January 26, 2016
    Assignee: Infineon Technologies AG
    Inventors: Johannes Georg Laven, Roman Baburske, Christian Jaeger, Hans-Joachim Schulze
  • Publication number: 20150365083
    Abstract: A drive circuit for driving a semiconductor switch includes an overload detector circuit connected to the semiconductor switch and designed to detect an overload state of the semiconductor switch. The drive circuit further includes a driver circuit connected to a control terminal of the semiconductor switch and designed to generate, upon detection of an overload state, a driver signal having a level such that the semiconductor switch is switched off or switch-on is prevented. The driver circuit is further designed to generate a driver signal for driving the semiconductor switch according to a control signal, wherein for switching on the transistor at a first instant a driver signal is generated at a first level and, if no overload state is detected up to a predefined time period having elapsed, the level of the driver signal is increased to a second level.
    Type: Application
    Filed: June 12, 2015
    Publication date: December 17, 2015
    Inventors: Christian Jaeger, Johannes Georg Laven
  • Publication number: 20150279985
    Abstract: A transistor device includes a semiconductor mesa region between first and second trenches in a semiconductor body, a body region of a first conductivity type and a source region of a second conductivity type in the semiconductor mesa region, a drift region of the second conductivity type in the semiconductor body, and a gate electrode adjacent the body region in the first trench, and dielectrically insulated from the body region by a gate dielectric. The body region separates the source region from the drift region and extends to the surface of the semiconductor mesa region adjacent the source region. The body region comprises a surface region which adjoins the surface of the semiconductor mesa region and the first trench. The surface region has a higher doping concentration than a section of the body region that separates the source region from the drift region.
    Type: Application
    Filed: March 28, 2014
    Publication date: October 1, 2015
    Inventors: Alexander Philippou, Johannes Georg Laven, Christian Jaeger, Frank Wolter, Frank Pfirsch, Antonio Vellei
  • Publication number: 20150270369
    Abstract: A method of manufacturing an insulated gate bipolar transistor includes providing trenches extending from a first surface to a layer section in a semiconductor portion, introducing impurities into mesa sections between the trenches, and forming, from the introduced impurities, second portions of doped regions separated from source regions by body regions. The source regions are electrically connected to an emitter electrode. The second portions have a second mean net impurity concentration exceeding at least ten times a first mean net impurity concentration in first portions of the doped layer. The first portions extend from the body regions to the layer section, respectively.
    Type: Application
    Filed: June 9, 2015
    Publication date: September 24, 2015
    Inventors: Johannes Georg Laven, Alexander Philippou, Hans-Joachim Schulze, Christian Jaeger, Roman Baburske, Antonio Vellei
  • Patent number: 9105679
    Abstract: In a semiconductor device a barrier region is sandwiched between a drift region and a charge carrier transfer region. The barrier and charge carrier transfer regions form a pn junction. The barrier and drift regions form a homojunction. A mean impurity concentration in the barrier region is at least ten times as high as an impurity concentration in the drift region. A control structure is arranged to form an inversion layer in the drift and barrier regions in an inversion state. No inversion layer is formed in the drift and barrier regions in a non-inversion state.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: August 11, 2015
    Assignee: Infineon Technologies AG
    Inventors: Johannes Georg Laven, Roman Baburske, Christian Jaeger
  • Patent number: 9076838
    Abstract: An IGBT includes a mesa section that extends between two cell trench structures from a first surface of a semiconductor portion to a layer section of the semiconductor portion. A source region, which is electrically connected to an emitter electrode, is formed in the mesa section. A doped region, which is separated from the source region by a body region of a complementary conductivity type, includes a first portion with a first mean net impurity concentration and a second portion with a second mean net impurity concentration exceeding at least ten times the first mean net impurity concentration. In the mesa section the first portion extends from the body region to the layer section. The second portions of the doped region virtually narrow the mesa sections in a normal on-state of the IGBT.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: July 7, 2015
    Assignee: Infineon Technologies AG
    Inventors: Johannes Georg Laven, Alexander Philippou, Hans-Joachim Schulze, Christian Jaeger, Roman Baburske, Antonio Vellei
  • Publication number: 20150144988
    Abstract: In a semiconductor device a barrier region is sandwiched between a drift region and a charge carrier transfer region. The barrier and charge carrier transfer regions form a pn junction. The barrier and drift regions form a homojunction. A mean impurity concentration in the barrier region is at least ten times as high as an impurity concentration in the drift region. A control structure is arranged to form an inversion layer in the drift and barrier regions in an inversion state. No inversion layer is formed in the drift and barrier regions in a non-inversion state.
    Type: Application
    Filed: November 27, 2013
    Publication date: May 28, 2015
    Applicant: Infineon Technologies AG
    Inventors: Johannes Georg Laven, Roman Baburske, Christian Jaeger
  • Publication number: 20150076554
    Abstract: An IGBT includes a mesa section that extends between two cell trench structures from a first surface of a semiconductor portion to a layer section of the semiconductor portion. A source region, which is electrically connected to an emitter electrode, is formed in the mesa section. A doped region, which is separated from the source region by a body region of a complementary conductivity type, includes a first portion with a first mean net impurity concentration and a second portion with a second mean net impurity concentration exceeding at least ten times the first mean net impurity concentration. In the mesa section the first portion extends from the body region to the layer section. The second portions of the doped region virtually narrow the mesa sections in a normal on-state of the IGBT.
    Type: Application
    Filed: September 13, 2013
    Publication date: March 19, 2015
    Inventors: Johannes Georg Laven, Alexander Philippou, Hans-Joachim Schulze, Christian Jaeger, Roman Baburske, Antonio Vellei
  • Publication number: 20140209973
    Abstract: A reverse blocking semiconductor device includes a base region of a first conductivity type and a body region of a second, complementary conductivity type, wherein the base and body regions form a pn junction. Between the base region and a collector electrode an emitter layer is arranged that includes emitter zones of the second conductivity type and at least one channel of the first conductivity type. The channels extend through the emitter layer between the base region and the collector electrode and reduce the leakage current in a forward blocking state.
    Type: Application
    Filed: January 31, 2013
    Publication date: July 31, 2014
    Inventors: Johannes Georg Laven, Roman Baburske, Christian Jaeger, Hans-Joachim Schulze