Patents by Inventor Christopher Holland

Christopher Holland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210328068
    Abstract: A method of forming a semiconductor device includes forming source/drain contact openings extending through at least one dielectric layer to expose source/drain contact regions of source/drain structures. The method further includes forming conductive plugs in the source/drain contact openings. The method further includes depositing a light blocking layer over the conductive plugs and the at least one dielectric layer. The method further includes etching the light blocking layer to expose the conductive plugs. The method further includes directing a laser irradiation to the conductive plugs and the light blocking layer. The laser irradiation is configured to activate dopants in the source/drain contact regions.
    Type: Application
    Filed: June 28, 2021
    Publication date: October 21, 2021
    Inventors: Blandine Duriez, Marcus Johannes Henricus Van Dal, Martin Christopher Holland, Gerben Doornbos, Georgios Vellianitis
  • Publication number: 20210296442
    Abstract: Provided herein are semiconductor structures that include germanium and have a germanium nitride layer on the surface, as well as methods of forming the same. The described structures include nanowires and fins. Methods of the disclosure include metal-organic chemical vapor deposition with a germanium precursor. The described methods also include using a N2H4 vapor.
    Type: Application
    Filed: June 7, 2021
    Publication date: September 23, 2021
    Inventors: Martin Christopher Holland, Georgios Vellianitis
  • Publication number: 20210265490
    Abstract: In a method of manufacturing a semiconductor device, a dummy gate structure is formed over a channel region of a semiconductor layer, a source/drain epitaxial layer is formed on opposing sides of the dummy gate structure, a planarization operation is performed on the source/drain epitaxial layer, the planarized source/drain epitaxial layer is patterned, the dummy gate structure is removed to form a gate space, and a metal gate structure is formed in the gate space.
    Type: Application
    Filed: May 10, 2021
    Publication date: August 26, 2021
    Inventors: Blandine DURIEZ, Georgios VELLIANITIS, Gerben DOORNBOS, Marcus Johannes Henricus VAN DAL, Martin Christopher HOLLAND, Timothy VASEN
  • Publication number: 20210225647
    Abstract: A crystalline channel layer of a semiconductor material is formed in a backend process over a crystalline dielectric seed layer. A crystalline magnesium oxide MgO is formed over an amorphous inter-layer dielectric layer. The crystalline MgO provides physical link to the formation of a crystalline semiconductor layer thereover.
    Type: Application
    Filed: April 7, 2021
    Publication date: July 22, 2021
    Inventors: Matthias Passlack, Blandine Duriez, Georgios Vellianitis, Gerben Doornbos, Marcus Johannes Henricus Van Dal, Martin Christopher Holland, Mauricio Manfrini
  • Patent number: 11069813
    Abstract: A method of forming a semiconductor device includes forming source/drain contact openings extending through at least one dielectric layer to expose source/drain contact regions of source/drain structures. The method further includes forming conductive plugs in the source/drain contact openings. The method further includes depositing a light blocking layer over the conductive plugs and the at least one dielectric layer. The method further includes etching the light blocking layer to expose the conductive plugs. The method further includes directing a laser irradiation to the conductive plugs and the light blocking layer. The laser irradiation is configured to activate dopants in the source/drain contact regions.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: July 20, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Blandine Duriez, Marcus Johannes Henricus Van Dal, Martin Christopher Holland, Gerben Doornbos, Georgios Vellianitis
  • Publication number: 20210184029
    Abstract: Various methods for fabricating non-planar integrated circuit devices, such as FinFET devices, are disclosed herein. An exemplary method includes forming a rib structure extending from a substrate; forming a two-dimensional material layer (including, for example, transition metal dichalcogenide or graphene) on the rib structure and the substrate; patterning the two-dimensional material layer, such that the two-dimensional material layer is disposed on at least one surface of the rib structure; and forming a gate on the two-dimensional material layer. In some implementations, a channel region, a source region, and a drain region are defined in the two-dimensional material layer. The channel region is disposed between the source region and the drain region, where the gate is disposed over the channel region. In some implementations, the patterning includes removing the two-dimensional material layer disposed on a top surface of the substrate and/or disposed on a top surface of the rib structure.
    Type: Application
    Filed: March 1, 2021
    Publication date: June 17, 2021
    Inventors: Mark van Dal, Martin Christopher Holland, Matthias Passlack
  • Patent number: 11031468
    Abstract: Provided herein are semiconductor structures that include germanium and have a germanium nitride layer on the surface, as well as methods of forming the same. The described structures include nanowires and fins. Methods of the disclosure include metal-organic chemical vapor deposition with a germanium precursor. The described methods also include using a N2H4 vapor.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: June 8, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Martin Christopher Holland, Georgios Vellianitis
  • Patent number: 11018243
    Abstract: A semiconductor device includes a substrate, a gate structure, a plurality of nanowires, a sacrificial material, and an epitaxy structure. The gate structure is disposed on and in contact with the substrate. The nanowires extend through the gate structure. The sacrificial material is separated from the gate structure. The epitaxy structure is in contact with the nanowires, is separated from the substrate, and surrounds the sacrificial material.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: May 25, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Blandine Duriez, Martin Christopher Holland, Georgios Vellianitis, Mark Van Dal
  • Patent number: 11004958
    Abstract: In a method of manufacturing a semiconductor device, a dummy gate structure is formed over a channel region of a semiconductor layer, a source/drain epitaxial layer is formed on opposing sides of the dummy gate structure, a planarization operation is performed on the source/drain epitaxial layer, the planarized source/drain epitaxial layer is patterned, the dummy gate structure is removed to form a gate space, and a metal gate structure is formed in the gate space.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: May 11, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Blandine Duriez, Georgios Vellianitis, Gerben Doornbos, Marcus Johannes Henricus Van Dal, Martin Christopher Holland, Timothy Vasen
  • Publication number: 20210134594
    Abstract: A method of forming a semiconductor structure is provided. The method includes etching a trench in a template layer over a substrate, forming a seed structure over a bottom surface of the trench, forming a dielectric cap over the seed structure, and growing a single crystal semiconductor structure within the trench using a vapor liquid solid epitaxy growth process. The single crystal semiconductor structure is grown from a liquid-solid interface between the seed structure and the bottom surface of the trench.
    Type: Application
    Filed: October 31, 2019
    Publication date: May 6, 2021
    Inventor: Martin Christopher Holland
  • Patent number: 10991576
    Abstract: A crystalline channel layer of a semiconductor material is formed in a backend process over a crystalline dielectric seed layer. A crystalline magnesium oxide MgO is formed over an amorphous inter-layer dielectric layer. The crystalline MgO provides physical link to the formation of a crystalline semiconductor layer thereover.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: April 27, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Matthias Passlack, Blandine Duriez, Georgios Vellianitis, Gerben Doornbos, Marcus Johannes Henricus Van Dal, Martin Christopher Holland, Mauricio Manfrini
  • Publication number: 20210119131
    Abstract: A field effect transistor includes a semiconductor substrate, a first pad layer, carbon nanotubes and a gate structure. The first pad layer is disposed over the semiconductor substrate and comprises a 2D material. The carbon nanotubes are disposed over the first insulating pad layer. The gate structure is disposed over the semiconductor substrate and is vertically stacked with the carbon nanotubes. The carbon nanotubes extend from one side to an opposite side of the gate structure.
    Type: Application
    Filed: October 18, 2019
    Publication date: April 22, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Timothy Vasen, Chao-Ching Cheng, Matthias Passlack, Martin Christopher Holland, Tse-An Chen, Lain-Jong Li
  • Patent number: 10978557
    Abstract: A method includes forming a plurality of first semiconductor layers and second semiconductor layers in an alternate manner over a substrate; etching the first semiconductor layers and second semiconductor layers to form a fin structure, in which the fin structure comprises a plurality of first nanowires and second nanowires alternately arranged, the first nanowires have respective remaining portions of the first semiconductor layers, and the second nanowires have respective remaining portions of second semiconductor layers; forming a dummy gate over the fin structure; forming a plurality of gate spacers on opposite sidewalls of the dummy gate, respectively; replacing the dummy gate with a metal gate; removing first portions of the second nanowires exposed by the metal gate and metal gate and the gate spacers suspended; and forming an epitaxy layer wrapping around the first portions of the first nanowires, in which opposite sidewalls of the epitaxy layer have zig-zag contour.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: April 13, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Martin Christopher Holland, Mark Van Dal, Georgios Vellianitis, Blandine Duriez, Gerben Doornbos
  • Publication number: 20210104606
    Abstract: A field effect transistor includes a channel made of germanium and a source/drain portion. The source/drain portion includes a germanium layer, an interfacial epitaxial layer over the germanium layer, a semiconductor layer over the interfacial epitaxial layer, and a conducting layer over the semiconductor layer. The interfacial epitaxial layer contains germanium and an element from the semiconductor layer and has a thickness in a range from about 1 nm to about 3 nm.
    Type: Application
    Filed: November 23, 2020
    Publication date: April 8, 2021
    Inventors: Martin Christopher HOLLAND, Blandine DURIEZ
  • Patent number: 10970408
    Abstract: A method for securing a digital document comprising first and second types of data, where a set of data of the second type is previously identified in an initial version of the document. For each data of the second type, an identifier is allocated to the data and an entry comprising the data is stored in a secure storage unit. The identifier comprises a display value and a link value. The data is reachable in the secure storage unit through the link value. The secure storage unit is configured to use access rules for authorizing or denying a request initiated by a user for accessing data of the second type contained in an entry of the secure storage unit. An updated version of the digital document is generated by replacing each data of the second type by its allocated identifier in the initial version of the digital document.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: April 6, 2021
    Assignee: THALES DIS CPL USA, INC.
    Inventors: Christopher Holland, Russell Egan
  • Publication number: 20210098633
    Abstract: A method of forming a semiconductor device includes forming source/drain contact openings extending through at least one dielectric layer to expose source/drain contact regions of source/drain structures. The method further includes forming conductive plugs in the source/drain contact openings. The method further includes depositing a light blocking layer over the conductive plugs and the at least one dielectric layer. The method further includes etching the light blocking layer to expose the conductive plugs. The method further includes directing a laser irradiation to the conductive plugs and the light blocking layer. The laser irradiation is configured to activate dopants in the source/drain contact regions.
    Type: Application
    Filed: September 30, 2019
    Publication date: April 1, 2021
    Inventors: Blandine Duriez, Marcus Johannes Henricus Van Dal, Martin Christopher Holland, Gerben Doornbos, Georgios Vellianitis
  • Publication number: 20210098632
    Abstract: A method of forming a semiconductor device includes forming source/drain contact openings extending through at least one dielectric layer to expose source/drain contact regions of source/drain structures. The method further includes depositing a light blocking layer along sidewalls and bottom surfaces of the source/drain contact openings and a topmost surface of the at least one dielectric layer. The method further includes performing a laser annealing process to activate dopants in the source/drain contact region. The method further includes forming source/drain contact structures within source/drain contact openings.
    Type: Application
    Filed: September 27, 2019
    Publication date: April 1, 2021
    Inventors: Blandine Duriez, Marcus Johannes Henricus Van Dal, Martin Christopher Holland, Gerben Doornbos, Georgios Vellianitis
  • Patent number: 10956590
    Abstract: A method for securely accessing a document containing a set of data comprises (a) detecting the existence of target data belonging to an enhanced version of the document and missing from the current version of the document, (b) generating a link value allocated to the target data by applying a preset function to a subset of said set of data, (c) retrieving metadata from a secure storage unit by using the link value and, using a message based on said metadata, proposing to the user to get the target data, (d) getting both agreement of the user and credentials of the user, (e) generating a request by using the link value and said credentials for retrieving the target data from the secure storage unit, (f) providing the user with the target data only if the secure storage unit successfully checked the compliance of the request with preset access rules.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: March 23, 2021
    Assignee: THALES DIS CPL USA, INC.
    Inventors: Christopher Holland, Russell Egan
  • Publication number: 20210066499
    Abstract: In an embodiment, a device includes: a semiconductor substrate having a channel region; a gate stack over the channel region; and an epitaxial source/drain region adjacent the gate stack, the epitaxial source/drain region including: a main portion in the semiconductor substrate, the main portion including a semiconductor material doped with gallium, a first concentration of gallium in the main portion being less than the solid solubility of gallium in the semiconductor material; and a finishing portion over the main portion, the finishing portion doped with gallium, a second concentration of gallium in the finishing portion being greater than the solid solubility of gallium in the semiconductor material.
    Type: Application
    Filed: March 2, 2020
    Publication date: March 4, 2021
    Inventors: Martin Christopher Holland, Blandine Duriez, Marcus Johannes Henricus van Dal, Yasutoshi Okuno
  • Patent number: 10937908
    Abstract: Various methods for fabricating non-planar integrated circuit devices, such as FinFET devices, are disclosed herein. An exemplary method includes forming a rib structure extending from a substrate; forming a two-dimensional material layer (including, for example, transition metal dichalcogenide or graphene) on the rib structure and the substrate; patterning the two-dimensional material layer, such that the two-dimensional material layer is disposed on at least one surface of the rib structure; and forming a gate on the two-dimensional material layer. In some implementations, a channel region, a source region, and a drain region are defined in the two-dimensional material layer. The channel region is disposed between the source region and the drain region, where the gate is disposed over the channel region. In some implementations, the patterning includes removing the two-dimensional material layer disposed on a top surface of the substrate and/or disposed on a top surface of the rib structure.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: March 2, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Mark van Dal, Martin Christopher Holland, Matthias Passlack