Patents by Inventor Christopher J. Petti

Christopher J. Petti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8785294
    Abstract: A method of fabricating an electronic device includes providing a silicon carbide or diamond-like carbon donor body and implanting ions into a first surface of the donor body to define a cleave plane. After implanting, an epitaxial layer is formed on the first surface, and a temporary carrier is coupled to the epitaxial layer. A lamina is cleaved from the donor body at the cleave plane, and the temporary carrier is removed from the lamina. In some embodiments a light emitting diode or a high electron mobility transistor is fabricated from the lamina and epitaxial layer.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: July 22, 2014
    Assignee: GTAT Corporation
    Inventors: Venkatesan Murali, Steve Babayan, Christopher J. Petti
  • Publication number: 20140166968
    Abstract: A nonvolatile memory cell is provided that includes a diode and a reversible resistance-switching element that includes a resistance-switching metal oxide or nitride, the metal oxide or nitride including only one metal. Numerous other aspects are provided.
    Type: Application
    Filed: February 19, 2014
    Publication date: June 19, 2014
    Applicant: SANDISK 3D LLC
    Inventors: Scott Brad Herner, Christopher J. Petti, Tanmay Kumar
  • Patent number: 8748859
    Abstract: An integrated circuit including vertically oriented diode structures between conductors and methods of fabricating the same are provided. Two-terminal devices such as passive element memory cells can include a diode steering element in series with an antifuse and/or other state change element. The devices are formed using pillar structures at the intersections of upper and lower sets of conductors. The height of the pillar structures are reduced by forming part of the diode for each pillar in a rail stack with one of the conductors. A diode in one embodiment can include a first diode component of a first conductivity type and a second diode component of a second conductivity type. A portion of one of the diode components is divided into first and second portions with one on the portions being formed in the rail stack where it is shared with other diodes formed using pillars at the rail stack.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: June 10, 2014
    Assignee: SanDisk 3D LLC
    Inventors: Kang-Jay Hsia, Christopher J Petti, Calvin K Li
  • Patent number: 8741768
    Abstract: A method is provided that includes forming conductive or semiconductive features above a first dielectric material, depositing a second dielectric material above the conductive or semiconductive features, etching a void in the second dielectric material, wherein the etch stops on the first dielectric material, and exposing a portion of the conductive or semiconductive features. Numerous other aspects are provided.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: June 3, 2014
    Assignee: SanDisk 3D LLC
    Inventor: Christopher J. Petti
  • Patent number: 8741696
    Abstract: The present invention provides apparatus, methods, and systems for fabricating memory structures methods of forming pillars for memory cells using sequential sidewall patterning. The invention includes forming first features from a first template layer disposed above a memory layer stack; forming first sidewall spacers adjacent the first features; forming second features that extend in a first direction in a mask layer by using the first sidewall spacers as a hardmask; depositing a second template layer on the mask layer; forming third features from the second template layer; forming second sidewall spacers adjacent the third features; and forming fourth features that extend in a second direction in the mask layer by using the second sidewall spacers as a hardmask. Numerous additional aspects are disclosed.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: June 3, 2014
    Assignee: SanDisk 3D LLC
    Inventors: Roy E. Scheuerlein, Christopher J. Petti, Yoichiro Tanaka
  • Publication number: 20140133074
    Abstract: An electronic device comprising a cover plate is disclosed. The cover plate comprises one or more sapphire layers having a thickness of less than 50 microns. Also disclosed are methods for preparing these ultrathin sapphire layers using an ion implantation/exfoliation method.
    Type: Application
    Filed: November 14, 2013
    Publication date: May 15, 2014
    Applicant: GTAT CORPORATION
    Inventors: James M. Zahler, Christopher J. Petti
  • Patent number: 8687410
    Abstract: A method is provided for programming a memory cell in a memory array. The memory cell includes a resistivity-switching layer of a metal oxide or nitride compound, and the metal oxide or nitride compound includes exactly one metal. The method includes programming the memory cell by changing the resistivity-switching layer from a first resistivity state to a second programmed resistivity state, wherein the second programmed resistivity state stores a data state of the memory cell. Numerous other aspects are provided.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: April 1, 2014
    Assignee: SanDisk 3D LLC
    Inventors: Scott Brad Herner, Christopher J. Petti, Tanmay Kumar
  • Publication number: 20140038329
    Abstract: Methods and apparatus are provided for forming an electronic device from a lamina and an epitaxially grown semiconductor material. The method includes providing a donor body comprising a top surface, epitaxially growing a semiconductor material on the top surface and implanting the top surface of the donor body with an ion dosage to form a cleave plane. After implantation, a lamina may be exfoliated from the donor body, wherein the top surface of the donor body becomes a first surface of the lamina. Exfoliating the lamina forms a second surface of the lamina, wherein the first surface is opposite the second surface. A metal support may be constructed on the lamina.
    Type: Application
    Filed: August 1, 2013
    Publication date: February 6, 2014
    Applicant: GTAT Corporation
    Inventor: Christopher J. Petti
  • Publication number: 20140030836
    Abstract: A method of fabricating an electronic device includes providing a silicon carbide or diamond-like carbon donor body and implanting ions into a first surface of the donor body to define a cleave plane. After implanting, an epitaxial layer is formed on the first surface, and a temporary carrier is coupled to the epitaxial layer. A lamina is cleaved from the donor body at the cleave plane, and the temporary carrier is removed from the lamina. In some embodiments a light emitting diode or a high electron mobility transistor is fabricated from the lamina and epitaxial layer.
    Type: Application
    Filed: July 26, 2012
    Publication date: January 30, 2014
    Applicant: Twin Creeks Technologies, Inc.
    Inventors: Venkatesan Murali, Steve Babayan, Christopher J. Petti
  • Patent number: 8633374
    Abstract: In aspects of the present invention, a lamina is formed having opposing first and second surfaces. Heavily doped contact regions extend from the first surface to the second surface. Generally the lamina is formed by affixing a semiconductor donor body to a receiver element, then cleaving the lamina from the semiconductor donor body wherein the lamina remains affixed to the receiver element. In the present invention, the heavily doped contact regions are formed by doping the semiconductor donor body before cleaving of the lamina. A photovoltaic cell comprising the lamina is then fabricated. By forming the heavily doped contact regions before bonding to the receiver element and cleaving, post-bonding high-temperature steps can be avoided, which may be advantageous.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: January 21, 2014
    Assignee: GTAT Corporation
    Inventors: Mohamed M. Hilali, Christopher J. Petti, S. Brad Herner
  • Publication number: 20130295764
    Abstract: A method is provided that includes forming conductive or semiconductive features above a first dielectric material, depositing a second dielectric material above the conductive or semiconductive features, etching a void in the second dielectric material, wherein the etch stops on the first dielectric material, and exposing a portion of the conductive or semiconductive features.
    Type: Application
    Filed: July 10, 2013
    Publication date: November 7, 2013
    Inventor: Christopher J. Petti
  • Patent number: 8536448
    Abstract: A structure to provide a Zener diode to avoid shunt formation is disclosed. An undoped or lightly doped monocrystalline thin semiconductor lamina is cleaved from a donor body which is not permanently affixed to a support element. The lamina may be annealed at high temperature to remove damage from a prior implant. At least one aperture is formed through the lamina, either due to flaws in the cleaving process, or intentionally following cleaving. Heavily doped amorphous silicon layers having opposite conductivity types are deposited on opposite faces of the lamina, one forming the emitter and one a base contact to a photovoltaic cell, while the lamina forms the base of the cell. The heavily doped layers contact in the aperture, forming a Zener diode. This Zener diode prevents formation of shunts, and may behave as a bypass diode if the cell is placed under heavy reverse bias, as when one cell in a series string is shaded while the rest of the string is exposed to sun.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: September 17, 2013
    Assignee: GTAT Corporation
    Inventor: Christopher J Petti
  • Patent number: 8518724
    Abstract: A semiconductor assembly is described in which a support element is constructed on a surface of a semiconductor lamina. Following formation of the thin lamina, which may have a thickness about 50 microns or less, the support element is formed, for example by plating, or by application of a precursor and curing in situ, resulting in a support element which may be, for example, metal, ceramic, polymer, etc. This is in contrast to pre-formed support element which is affixed to the lamina following its formation, or to a donor wafer from which the lamina is subsequently cleaved. Fabricating the support element in situ may avoid the use of adhesives to attach the lamina to a permanent support element. In some embodiments, this process flow allows the lamina to be annealed at high temperature, then to have an amorphous silicon layer formed on each face of the lamina following that anneal.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: August 27, 2013
    Assignee: GTAT Corporation
    Inventors: Christopher J. Petti, Mohamed M. Hilali, Theodore Smick, Venkatesan Murali, Kathy J. Jackson, Zhiyong Li, Gopalakrishna Prabhu
  • Publication number: 20130203205
    Abstract: A method for fabricating a backside-illuminated sensor includes providing a thin film semiconductor lamina having a first conductivity, and forming a doped region having a second conductivity within the lamina and at a front surface of the lamina. The lamina may be provided as a free-standing lamina, or may be provided as a semiconductor donor body from which the lamina is cleaved. An electrical connection is formed to the doped region. A temporary carrier is contacted to the back surface of the semiconductor and later removed. A backside-illuminated sensor is fabricated from the semiconductor lamina, in which the thickness of the semiconductor lamina remains substantially unchanged during the fabrication process.
    Type: Application
    Filed: March 21, 2012
    Publication date: August 8, 2013
    Applicant: TWIN CREEKS TECHNOLOGIES, INC.
    Inventors: Venkatesan Murali, Arvind Chari, Gopal Prabhu, Christopher J. Petti
  • Publication number: 20130200497
    Abstract: The invention provides a method of forming an electronic device from a lamina that has a coefficient of thermal expansion that is matched or nearly matched to a constructed metal support. In some embodiments the method comprises implanting the top surface of a donor body with an ion dosage to form a cleave plane followed by exfoliating a lamina from the donor body. After exfoliating the lamina, a flexible metal support that has a coefficient of thermal expansion with a value that is within 10% of the value of the coefficient of thermal expansion of the lamina is constructed on the lamina. In some embodiments the coefficients of thermal expansion of the metal support and the lamina are within 10% or within 5% of each other between the temperatures of 500 and 1050° C.
    Type: Application
    Filed: July 26, 2012
    Publication date: August 8, 2013
    Applicant: TWIN CREEKS TECHNOLOGIES, INC.
    Inventors: Venkatesan Murali, Thomas Edward Dinan, JR., Steve Bababyan, Gopal Prabhu, Christopher J. Petti
  • Patent number: 8501522
    Abstract: A donor silicon wafer may be bonded to a substrate and a lamina cleaved from the donor wafer. A photovoltaic cell may be formed from the lamina bonded to the substrate. An intermetal stack is described that is optimized for use in such a cell. The intermetal stack may include a transparent conductive oxide layer serving as a quarter-wave plate, a low resistance layer, an adhesion layer to help adhesion to the receiver element, and may also include a barrier layer to prevent or impede unwanted diffusion within the stack.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: August 6, 2013
    Assignee: GTAT Corporation
    Inventors: S. Brad Herner, Mark H. Clark, Christopher J. Petti
  • Patent number: 8497204
    Abstract: In a first aspect, a method is provided that includes: forming a plurality of conductive or semiconductive features above a first dielectric material; depositing a second dielectric material above the conductive or semiconductive features; etching a void in the second dielectric material, wherein the etch is selective between the first and the second dielectric material and the etch stops on the first dielectric material; and exposing a portion of the conductive or semiconductive features. Numerous other aspects are provided.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: July 30, 2013
    Assignee: SanDisk 3D LLC
    Inventor: Christopher J. Petti
  • Patent number: 8481845
    Abstract: A very thin photovoltaic cell is formed by implanting gas ions below the surface of a donor body such as a semiconductor wafer. Ion implantation defines a cleave plane, and a subsequent step exfoliates a thin lamina from the wafer at the cleave plane. A photovoltaic cell, or all or a portion of the base or emitter of a photovoltaic cell, is formed within the lamina. In preferred embodiments, the wafer is affixed to a receiver before the cleaving step. Electrical contact can be formed to both surfaces of the lamina, or to one surface only.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: July 9, 2013
    Assignee: GTAT Corporation
    Inventors: Srinivasan Sivaram, Aditya Agarwal, S. Brad Herner, Christopher J. Petti
  • Patent number: 8410353
    Abstract: A novel surface texturing provides improved light-trapping characteristics for photovoltaic cells. The surface is asymmetric and includes shallow slopes at between about 5 and about 30 degrees from horizontal as well as steeper slopes at about 70 degrees or more from horizontal. It is advantageously used as either the front or back surface of a thin semiconductor lamina, for example between about 1 and about 20 microns thick, which comprises at least the base or emitter of a photovoltaic cell. In embodiments of the present invention, the shallow slopes are formed using imprint photolithography.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: April 2, 2013
    Assignee: GTAT Corporation
    Inventor: Christopher J Petti
  • Patent number: 8349664
    Abstract: In a novel nonvolatile memory cell formed above a substrate, a diode is paired with a reversible resistance-switching material, preferably a metal oxide or nitride such as, for example, NixOy, NbxOy, TixOy, HfxOy, AlxOy, MgxOy, CoxOy, CrxOy, VxOy, ZnxOy, ZrxOy, BxNy, and AlxNy. In preferred embodiments, the diode is formed as a vertical pillar disposed between conductors. Multiple memory levels can be stacked to form a monolithic three dimensional memory array. In some embodiments, the diode comprises germanium or a germanium alloy, which can be deposited and crystallized at relatively low temperatures, allowing use of aluminum or copper in the conductors. The memory cell of the present invention can be used as a rewriteable memory cell or a one-time-programmable memory cell, and can store two or more data states.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: January 8, 2013
    Assignee: SanDisk 3D LLC
    Inventors: Scott Brad Herner, Christopher J. Petti, Tanmay Kumar