Patents by Inventor Christopher P. Hussell

Christopher P. Hussell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11292966
    Abstract: A method is disclosed for forming a blended phosphor composition. The method includes the steps of firing precursor compositions that include europium and nitrides of at least calcium, strontium and aluminum, in a refractory metal crucible and in the presence of a gas that precludes the formation of nitride compositions between the nitride starting materials and the refractory metal that forms the crucible. The resulting compositions can include phosphors that convert frequencies in the blue portion of the visible spectrum into frequencies in the red portion of the visible spectrum.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: April 5, 2022
    Assignee: CREELED, INC.
    Inventors: Brian T. Collins, Christopher P. Hussell, David T. Emerson, Ronan P. Le Toquin
  • Patent number: 11270897
    Abstract: An apparatus and associated method for high speed and/or mass transfer of electronic components onto a substrate comprises transferring, using an ejector assembly, electronics components (e.g., light emitting devices) from a die sheet onto an adhesive receiving structure to form a predefined pattern including electronic components thereon, and then transferring the electronic components defining the predefined pattern onto a substrate (e.g., a translucent superstrate) for light emission therethrough to create a high-density (e.g., high resolution) display device utilizing, for example, mini- or micro-LED display technologies.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: March 8, 2022
    Assignee: CREELED, INC.
    Inventors: Christopher P. Hussell, Peter Scott Andrews
  • Publication number: 20220070982
    Abstract: An area lamp includes an emitter array and driver circuitry. The emitter array includes a number of solid-state light emitters. Each one of the solid-state light emitters is configured to provide light suitable for general illumination within a field of view such that light emitted from a first subset of the number of solid-state light emitters is provided to a different portion of the field of view than light emitted from a second subset of the number of solid-state light emitters. The driver circuitry is coupled to the emitter array and configured to provide drive signals to the emitter array such that the light provided from each one of the solid-state light emitters is independently controllable and a number of drive signals is less than the number of solid-state light emitters.
    Type: Application
    Filed: October 14, 2021
    Publication date: March 3, 2022
    Inventors: Christopher P. Hussell, Brian Carrigan, John J. Trainor, Joseph P. Chobot, Matthew Deese, Keith Bryan
  • Publication number: 20210399183
    Abstract: Light-emitting devices with active electrical elements and light-emitting diodes (LEDs) are disclosed. LEDs may be mounted on an active electrical element such that the LEDs are within peripheral edges of the active electrical element. Contact pads may be arranged on the active electrical element for receiving external power and communication signals for active control of the LEDs. A light-transmissive carrier may be positioned over the active electrical element and the LEDs. Electrical traces of the carrier may be configured to electrically connect with the contact pads to route external power connections and communication signals for the active electrical element. Other electrical traces of the carrier may form a touch sensing element that is electrically coupled with the active electrical element. Active electrical elements with LEDs provided thereon may form compact sizes for use as active LED pixels configured for active-matrix addressing within an LED display.
    Type: Application
    Filed: June 19, 2020
    Publication date: December 23, 2021
    Inventors: Christopher P. Hussell, Zhenyu Zhong
  • Patent number: 11160148
    Abstract: An area lamp includes an emitter array and driver circuitry. The emitter array includes a number of solid-state light emitters. Each one of the solid-state light emitters is configured to provide light suitable for general illumination within a field of view such that light emitted from a first subset of the number of solid-state light emitters is provided to a different portion of the field of view than light emitted from a second subset of the number of solid-state light emitters. The driver circuitry is coupled to the emitter array and configured to provide drive signals to the emitter array such that the light provided from each one of the solid-state light emitters is independently controllable and a number of drive signals is less than the number of solid-state light emitters.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: October 26, 2021
    Assignee: IDEAL Industries Lighting LLC
    Inventor: Christopher P. Hussell
  • Patent number: 11101408
    Abstract: Components and methods containing one or more light emitter devices, such as light emitting diodes (LEDs) or LED chips, are disclosed. In one aspect, a light emitter device component can include inner walls forming a recess defining an opening such that surface area outside of the opening of the recess is less than or equal to a threshold ratio of overall surface area. In one aspect, the light emitter device component can include a ceramic body mounted directly or indirectly on the ceramic body. Components disclosed herein can result in improved light extraction and thermal management.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: August 24, 2021
    Assignee: CreeLED, Inc.
    Inventor: Christopher P. Hussell
  • Patent number: 11101410
    Abstract: Light emitting diode (LED) devices and systems include a superstrate (e.g., a light-transmissive layer), at least one region of wavelength-conversion material in the light-transmissive layer, and LEDs attached to the superstrate at the location of the wavelength-conversion material. An encapsulant layer is formed over and/or around the LEDs with an opaque or clear material. Additional color filter layers are optionally applied to the light-transmissive layer. A method for producing LED devices and systems includes providing a superstrate with a wavelength-conversion material region formed therein, attaching LEDs to the superstrate at the die-attach layer, forming conductive surfaces on a side of the LED opposite the die-attach layer, dispensing an encapsulant layer to at least partially encapsulate the LEDs, and forming one or more electrical traces to electrically interconnect the conductive surfaces of at least some of the LEDs with each other.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: August 24, 2021
    Assignee: CreeLED, Inc.
    Inventor: Christopher P. Hussell
  • Patent number: 11094852
    Abstract: Light emitting diode (LED) packages and LED displays utilizing the LED packages are disclosed. LED packages can have a plurality of cavities with each having one or more LEDs. The LEDs can be individually controllable so that the LED package emits the desired color combination of light from the package. The LED packages are arranged with an encapsulant over the cavities that shape the LED package emission to a wide angle or pitch. Some of the LED packages can have three cavities, while others can have four or more cavities. The packages can comprise an encapsulant that forms lenses over the cavities and continues beyond the cavities to cover surfaces of the LED package body. The body can include different anchoring features to improve package reliability by anchoring the encapsulant to the body. One embodiment of an LED display according to the present invention comprises a plurality of LED packages, at least some having a plurality of cavities.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: August 17, 2021
    Assignee: Cree Huizhou Solid State Lighting Company Limited
    Inventors: Chak Hau Charles Pang, Yue Kwong Victor Lau, JuZuo Sheng, Christopher P. Hussell
  • Patent number: 11081626
    Abstract: Solid-state lighting devices including light-emitting diodes (LEDs) and more particularly LED packages are disclosed. A light-altering material may be provided in particular configurations within an LED package to redirect light toward a primary emission direction. The light-altering material may be arranged on any of a first face, a second face, or a plurality of sidewalls of an LED chip in the LED package. In certain embodiments, a lumiphoric material may be arranged on one or more of the sidewalls. A superstrate may be arranged to mechanically support the LED chip from the first face. The light-altering material may be arranged on or dispersed within the superstrate. In certain embodiments, the primary emission direction of the LED package is substantially parallel to the second face of the LED chip in the LED package. An overall thickness or height of the LED package may be less than or equal to 0.25 mm.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: August 3, 2021
    Assignee: CreeLED, Inc.
    Inventor: Christopher P. Hussell
  • Publication number: 20210104503
    Abstract: An LED wafer includes LED dies on an LED substrate. The LED wafer and a carrier wafer are joined. The LED wafer that is joined to the carrier wafer is shaped. Wavelength conversion material is applied to the LED wafer that is shaped. Singulation is performed to provide LED dies that are joined to a carrier die. The singulated devices may be mounted in an LED fixture to provide high light output per unit area.
    Type: Application
    Filed: November 24, 2020
    Publication date: April 8, 2021
    Inventors: Michael John Bergmann, David Todd Emerson, Joseph G. Clark, Christopher P. Hussell
  • Patent number: 10962199
    Abstract: Solid state lighting components are provided with improved color rendering, improved color uniformity, and improved directional lighting, and that are suitable for use in high output lighting applications and can be used in place of CDMH bulb lighting. Exemplary solid state lighting components include a substrate comprising a light emitter surface and or more light emitters disposed on and/or over the light emitter surface. Exemplary components include a light directing optic and/or a diffusing optic for mixing light. The light directing optic may be disposed at least partially around a perimeter of the light emitter surface. The diffusing optic may be disposed between portions of the light directing optic and spaced apart from the light emitter surface.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: March 30, 2021
    Assignee: Cree, Inc.
    Inventors: Florin A. Tudorica, Christopher P. Hussell, John Wesley Durkee, Peter Scott Andrews, Mark Cash, David Randolph
  • Patent number: 10964866
    Abstract: An adaptive electrical routing system for constructing an LED device. The system takes into account placement errors and tolerance regions for connection of one or more LEDs on a substrate. An optical device captures an image (e.g., comprising positional data of components of the LED device) of the LED device showing the actual placement of LEDs on the substrate and transfers the image to an analysis program. A customized pattern (e.g., a customized electrical routing pattern) can be created in one of several possible ways.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: March 30, 2021
    Assignee: Cree, Inc.
    Inventor: Christopher P. Hussell
  • Publication number: 20210043821
    Abstract: Synchronization for light emitting diode (LED) pixels in an LED display is provided so that one or more actions of all LED pixels are able to be initiated at the same time, or within a millisecond. LED displays and corresponding systems may include a controller that is configured for sending communication signals to one or more strings of LED pixels. Active electrical elements within each LED pixel may be configured to receive the communication signals, generate corresponding synchronization signals, and respond in a manner that is coordinated with all other LED pixels in a particular LED display. Failure mitigation of LED pixel failures within an LED string is provided where the controller is configured with bidirectional communication ports for communication with the LED string. In a failure mitigation process, the bidirectional communication ports may switch directions to provide communication signals to both sides of an LED string.
    Type: Application
    Filed: October 27, 2020
    Publication date: February 11, 2021
    Inventor: Christopher P. Hussell
  • Patent number: 10868220
    Abstract: Light emitting diode (LED) packages and LED displays utilizing the LED packages are disclosed. LED packages can have a plurality of cavities with each having one or more LEDs. The LEDs can be individually controllable so that the LED package emits the desired color combination of light from the package. The LED packages are arranged with an encapsulant over the cavities that shape the LED package emission to a wide angle or pitch. Some of the LED packages can have three cavities, while others can have four or more cavities. The packages can comprise an encapsulant that forms lenses over the cavities and continues beyond the cavities to cover surfaces of the LED package body. The body can include different anchoring features to improve package reliability by anchoring the encapsulant to the body. One embodiment of an LED display according to the present invention comprises a plurality of LED packages, at least some having a plurality of cavities.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: December 15, 2020
    Assignee: Cree Huizhou Solid State Lighting Company Limited
    Inventors: Chak Hau Charles Pang, Yue Kwong Victor Lau, JuZuo Sheng, Christopher P. Hussell
  • Patent number: 10854584
    Abstract: An LED wafer includes LED dies on an LED substrate. The LED wafer and a carrier wafer are joined. The LED wafer that is joined to the carrier wafer is shaped. Wavelength conversion material is applied to the LED wafer that is shaped. Singulation is performed to provide LED dies that are joined to a carrier die. The singulated devices may be mounted in an LED fixture to provide high light output per unit area.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: December 1, 2020
    Assignee: CREE, INC.
    Inventors: Michael John Bergmann, David Todd Emerson, Joseph G. Clark, Christopher P. Hussell
  • Publication number: 20200362237
    Abstract: A method is disclosed for forming a blended phosphor composition. The method includes the steps of firing precursor compositions that include europium and nitrides of at least calcium, strontium and aluminum, in a refractory metal crucible and in the presence of a gas that precludes the formation of nitride compositions between the nitride starting materials and the refractory metal that forms the crucible. The resulting compositions can include phosphors that convert frequencies in the blue portion of the visible spectrum into frequencies in the red portion of the visible spectrum.
    Type: Application
    Filed: July 31, 2020
    Publication date: November 19, 2020
    Applicant: Cree, Inc.
    Inventors: Brian T. Collins, Christopher P. Hussell, David T. Emerson, Ronan P. Le Toquin
  • Patent number: 10804251
    Abstract: Devices, components and methods containing one or more light emitter devices, such as light emitting diodes (LEDs) or LED chips, are disclosed. In one aspect, a light emitter device component can include a metallic substrate with a mirrored surface, one or more light emitter devices mounted directly or indirectly on the mirrored surface, and one or more electrical components mounted on the top surface and electrically coupled to the one or more light emitter devices, wherein the one or more electrical components can be spaced from the mirrored metal substrate by one or more non-metallic layers. Components disclosed herein can result in improved thermal management and light output.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: October 13, 2020
    Assignee: Cree, Inc.
    Inventors: Erin R. F. Welch, Colin Kelly Blakely, Jesse Colin Reiherzer, Christopher P. Hussell
  • Publication number: 20200312226
    Abstract: Active control of light emitting diodes (LEDs) and LED packages within LED displays is disclosed. LED packages are disclosed that include a plurality of LED chips that form at least one LED pixel for an LED display or an LED panel. Each LED package may include an active electrical element that is configured to receive a control signal and actively maintain an operating state, such as brightness or grey level while other LED packages are being addressed. Active electrical elements are disclosed that are configured to provide both forward and reverse bias states to LEDs to detect adverse operating conditions including reverse leakage and deviations to forward voltage levels. LED packages are also disclosed that may self-configure based on the manner in which various input or output lines are connected.
    Type: Application
    Filed: August 16, 2019
    Publication date: October 1, 2020
    Inventor: Christopher P. Hussell
  • Publication number: 20200309357
    Abstract: Active control of light emitting diodes (LEDs) and LED packages within LED displays is disclosed. LED packages are disclosed that include a plurality of LED chips that form at least one LED pixel for an LED display. Each LED package may include an active electrical element that is configured to receive a control signal and actively maintain an operating state, such as brightness or grey level while other LED packages are being addressed. Active electrical elements may include active circuitry that includes one or more of a driver device, a signal conditioning or transformation device, a memory device, a decoder device, an electrostatic discharge (ESD) protection device, a thermal management device, and a detection device, among others. In this regard, each LED pixel of an LED display may be configured for operation with active matrix addressing.
    Type: Application
    Filed: April 11, 2019
    Publication date: October 1, 2020
    Inventors: Christopher P. Hussell, Boris Dzyubenko, Colin Blakely
  • Patent number: RE48489
    Abstract: In one embodiment, a lamp comprises an optically transmissive enclosure. An LED array is disposed in the optically transmissive enclosure operable to emit light when energized through an electrical connection. A gas is contained in the enclosure to provide thermal coupling to the LED array. The gas may include oxygen.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: March 30, 2021
    Assignee: IDEAL Industries Lighting LLC
    Inventors: Christopher P. Hussell, John Adam Edmond, Gerald H. Negley, Curt Progl, Mark Edmond, Praneet Athalye, Charles M. Swoboda, Antony Paul van de Ven, Paul Kenneth Pickard, Bart P. Reier, James Michael Lay, Peter E. Lopez