Patents by Inventor Christopher P. Hussell

Christopher P. Hussell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9786825
    Abstract: Devices, components and methods containing one or more light emitter devices, such as light emitting diodes (LEDs) or LED chips, are disclosed. In one aspect, a light emitter device component can include a ceramic body having a top surface, one or more light emitter devices mounted directly or indirectly on the top surface, and one or more electrical components mounted on the top surface and electrically coupled to the one or more light emitter devices, wherein the one or more electrical components can be spaced from the ceramic body by one or more non-metallic layers. Components disclosed herein can result in improved light extraction and thermal management.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 10, 2017
    Assignee: Cree, Inc.
    Inventor: Christopher P. Hussell
  • Patent number: 9780268
    Abstract: Submount based surface mount design (SMD) light emitter components and related methods are disclosed. In some aspects, light emitter components can include a submount with a first side having a first surface area, first and second electrical contacts disposed on the first side of the submount, and at least one light emitter chip on the first side. In some aspects, the electrical contact area can be less than half of the first surface area of the first side of the submount. Components disclosed herein can include low profile parts or domes where a ratio between a dome height and a dome width is less than 0.5. A method of providing components can include providing a panel of material and LED chips, dispensing a liquid encapsulant material over the panel, and singulating the panel into individual submount based components after the encapsulant material has hardened.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: October 3, 2017
    Assignee: Cree, Inc.
    Inventors: Christopher P. Hussell, Erin Welch, Jesse Colin Reiherzer, Peter Scott Andrews
  • Publication number: 20170229431
    Abstract: An LED wafer includes LED dies on an LED substrate. The LED wafer and a carrier wafer are joined. The LED wafer that is joined to the carrier wafer is shaped. Wavelength conversion material is applied to the LED wafer that is shaped. Singulation is performed to provide LED dies that are joined to a carrier die. The singulated devices may be mounted in an LED fixture to provide high light output per unit area.
    Type: Application
    Filed: April 27, 2017
    Publication date: August 10, 2017
    Inventors: Michael John Bergmann, David Todd Emerson, Joseph G. Clark, Christopher P. Hussell
  • Patent number: 9653643
    Abstract: An LED wafer includes LED dies on an LED substrate. The LED wafer and a carrier wafer are joined. The LED wafer that is joined to the carrier wafer is shaped. Wavelength conversion material is applied to the LED wafer that is shaped. Singulation is performed to provide LED dies that are joined to a carrier die. The singulated devices may be mounted in an LED fixture to provide high light output per unit area.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: May 16, 2017
    Assignee: Cree, Inc.
    Inventors: Michael John Bergmann, David Todd Emerson, Joseph G. Clark, Christopher P. Hussell
  • Patent number: 9590155
    Abstract: Light emitting devices and substrates are provided with improved plating. In one embodiment, a light emitting device can include a submount and one or more light emitting diodes (LED) chips disposed over the submount. In one embodiment, the submount can include a copper (Cu) substrate, a first metallic layer of material that is highly reflective disposed over the Cu substrate for increased brightness of the device, and a second metallic layer disposed between the Cu substrate and the first metallic layer for forming a barrier therebetween.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: March 7, 2017
    Assignee: Cree, Inc.
    Inventors: Christopher P. Hussell, Jesse Colin Reiherzer, Erin Welch
  • Patent number: 9583681
    Abstract: Light emitter device packages, modules and methods are disclosed having a body and a cavity that can be formed from a single substrate of material. The material can be thermally conductive and/or metallic. A light emitter device package can have at least one isolating layer creating at least a first isolated portion of the body and/or first isolated portion of the cavity. The isolating layer can be formed from the same material as the single substrate which forms the package body and cavity, and can be a layer which is thermally and electrically isolated. A light emitter or light emitter device, such as an LED chip can be mounted upon a surface of the cavity and upon at least a portion of the isolating layer.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: February 28, 2017
    Assignee: Cree, Inc.
    Inventors: Sung Chul Joo, Christopher P. Hussell
  • Patent number: 9538590
    Abstract: Solid state lighting apparatuses and related methods are described. In some aspects, a solid state lighting apparatus includes a substrate. The substrate includes a non-metallic body having a first surface and one or more electrical components supported on the first surface of the substrate. At least one electrical component is spaced from the non-metallic body by one or more non-metallic layers. The apparatus can also include an array of solid state light emitters supported by the first surface of the substrate and electrically coupled to the one or more electrical components thereof. The apparatus can further include a receiver supported by the first surface of the substrate, wherein the receiver is adapted to receive alternating current (AC) directly from an AC power source. Related systems and methods are also disclosed.
    Type: Grant
    Filed: March 5, 2015
    Date of Patent: January 3, 2017
    Assignee: Cree, Inc.
    Inventors: Christopher P. Hussell, Jeremy Allen Johnson, Craig William Hardin
  • Publication number: 20160363269
    Abstract: A lamp has an optically transmissive enclosure and a base. A tower extends from the base into the enclosure and supports an LED assembly in the enclosure. The LED assembly comprises a plurality of LEDs operable to emit light when energized through an electrical path from the base. The tower and the LED assembly are arranged such that the plurality of LEDs are disposed about the periphery of the tower in a band and face outwardly toward the enclosure to create a source of the light that appears as a glowing filament. The tower forms part of a heat sink that transmits heat from the LED assembly to the ambient environment. The LED assembly has a three-dimensional shape. An electrical interconnect connects a conductor to the heat sink where the conductor is in the electrical path between the LED assembly and the base.
    Type: Application
    Filed: August 5, 2016
    Publication date: December 15, 2016
    Inventors: Christopher P. Hussell, John Adam Edmond, Gerald H. Negley, Curt Progl, Mark Edmond, Praneet Athalye, Charles M. Swoboda, Antony Paul van de Ven, Paul Kenneth Pickard, Bart P. Reier, James Michael Lay, Peter E. Lopez
  • Publication number: 20160348000
    Abstract: A method is disclosed for forming a blended phosphor composition. The method includes the steps of firing precursor compositions that include europium and nitrides of at least calcium, strontium and aluminum, in a refractory metal crucible and in the presence of a gas that precludes the formation of nitride compositions between the nitride starting materials and the refractory metal that forms the crucible. The resulting compositions can include phosphors that convert frequencies in the blue portion of the visible spectrum into frequencies in the red portion of the visible spectrum.
    Type: Application
    Filed: August 11, 2016
    Publication date: December 1, 2016
    Applicant: Cree, Inc.
    Inventors: Brian T. Collins, Christopher P. Hussell, David T. Emerson, Ronan P. Le Toquin
  • Patent number: 9496466
    Abstract: Light emitter devices with improved light extraction and related methods are disclosed. In one embodiment, the light emitter device can include a submount, at least one light emitting chip disposed over the submount, and a lens disposed over the light emitting chip. The lens can include a lens base that can have substantially the same geometry as a geometry of the submount.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: November 15, 2016
    Assignee: Cree, Inc.
    Inventors: Christopher P. Hussell, Justin Lydon, Raymond Rosado, Jeffrey C. Britt
  • Publication number: 20160320004
    Abstract: Solid state lighting components are provided with improved color rendering, improved color uniformity, and improved directional lighting, and that are suitable for use in high output lighting applications and can be used in place of CDMH bulb lighting. Exemplary solid state lighting components include a substrate comprising a light emitter surface and or more light emitters disposed on and/or over the light emitter surface. Exemplary components include a light directing optic and/or a diffusing optic for mixing light. The light directing optic may be disposed at least partially around a perimeter of the light emitter surface. The diffusing optic may be disposed between portions of the light directing optic and spaced apart from the light emitter surface.
    Type: Application
    Filed: April 29, 2016
    Publication date: November 3, 2016
    Inventors: Florin A. Tudorica, Christopher P. Hussell, John Wesley Durkee, Peter Scott Andrews, Mark Cash, David Randolph
  • Publication number: 20160293811
    Abstract: Solid state lighting apparatuses, systems, and related methods are provided. An example apparatus can include one or more light emitting diodes (LEDs) and a dark or black encapsulation layer surrounding and/or disposed between the one or more LEDs. The apparatus can include, e.g., a substrate or a leadframe for mounting the LEDs. A method for producing a panel of LEDs can include joining the LEDs to the panel, e.g., by bump bonding, and flooding the panel with dark or black encapsulation material so that the LED chips are surrounded by the dark or black encapsulation material.
    Type: Application
    Filed: March 31, 2016
    Publication date: October 6, 2016
    Inventors: Christopher P. Hussell, Zhong Zhenyu
  • Patent number: 9461024
    Abstract: Light emitter devices and methods are provided herein. In some aspects, emitter devices and methods provided herein are for light emitting diode (LED) chips, and can include providing a substrate and a plurality of LED chips over the substrate. The devices and methods described herein can further include providing a plurality of integral lenses over the LED chips, where at least some of the lenses can be distorted. In some aspects, the distorted lenses can be compressed towards each other along one or more directions.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: October 4, 2016
    Assignee: Cree, Inc.
    Inventor: Christopher P. Hussell
  • Patent number: 9428688
    Abstract: A method is disclosed for forming a blended phosphor composition. The method includes the steps of firing precursor compositions that include europium and nitrides of at least calcium, strontium and aluminum, in a refractory metal crucible and in the presence of a gas that precludes the formation of nitride compositions between the nitride starting materials and the refractory metal that forms the crucible. The resulting compositions can include phosphors that convert frequencies in the blue portion of the visible spectrum into frequencies in the red portion of the visible spectrum.
    Type: Grant
    Filed: November 17, 2008
    Date of Patent: August 30, 2016
    Assignee: Cree, Inc.
    Inventors: Brian T. Collins, Christopher P. Hussell, David T. Emerson, Ronan P. Le Toquin
  • Patent number: 9431590
    Abstract: Light emitter devices, such as light emitting diode (LED) devices and related methods are disclosed. A light emitter device includes a ceramic based substrate, at least one LED chip disposed on the substrate, and a filling material. The ceramic substrate can include one or more surface features. The filling material can be disposed over and/or within a portion of the one or more surface features. Surface features can include one or more pedestals, trenches, holes, indentions, depressions, waves, and/or convexly or concavely curved surfaces. Surface features can improve optics of the LED device, for example, improving brightness, reflection, and/or light extraction associated with the device. Related methods are disclosed.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: August 30, 2016
    Assignee: Cree, Inc.
    Inventors: Erin R. F. Welch, Harry A. Seibel, II, Christopher P. Hussell
  • Patent number: 9410687
    Abstract: A lamp has an optically transmissive enclosure and a base. A tower extends from the base into the enclosure and supports an LED assembly in the enclosure. The LED assembly comprises a plurality of LEDs operable to emit light when energized through an electrical path from the base. The tower and the LED assembly are arranged such that the plurality of LEDs are disposed about the periphery of the tower in a band and face outwardly toward the enclosure to create a source of the light that appears as a glowing filament. The tower forms part of a heat sink that transmits heat from the LED assembly to the ambient environment. The LED assembly has a three-dimensional shape. An electrical interconnect connects a conductor to the heat sink where the conductor is in the electrical path between the LED assembly and the base.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: August 9, 2016
    Assignee: Cree, Inc.
    Inventors: Christopher P. Hussell, John Adam Edmond, Gerald H. Negley, Curt Progl, Mark Edmond, Praneet Athalye, Charles M. Swoboda, Antony Paul van de Ven, Paul Kenneth Pickard, Bart P. Reier, James Michael Lay, Peter E. Lopez
  • Patent number: 9395051
    Abstract: A gas cooled LED lamp and submount is disclosed. The centralized nature of the LEDs allows the LEDs to be configured near the central portion of the optical envelope of the lamp. In some embodiments, the LEDs can be mounted on or fixed to a light transmissive submount. In some embodiments, LEDs can be disposed on both sides of a two-sided submount, or on thee or more sides if the submount structure includes three or more mounting surfaces. In example embodiments, the LEDs can be cooled and/or cushioned by a gas in thermal communication with the LED array to enable the LEDs to maintain an appropriate operating temperature for efficient operation and long life. In some embodiments, the gas is at a pressure of from about 0.5 to about 10 atmospheres and has a thermal conductivity of at least about 60 mW/m-K.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: July 19, 2016
    Assignee: Cree, Inc.
    Inventors: Christopher P. Hussell, John Adam Edmond, Gerald H. Negley
  • Patent number: 9395074
    Abstract: A lamp has an optically transmissive enclosure and a base defining a longitudinal axis of the lamp extending from the base to the free end of the enclosure. A heat sink is at least partially located in the enclosure and includes a tower that extends along the longitudinal axis of the lamp. An LED assembly is positioned in the optically transmissive enclosure. The LED assembly comprises a lead frame circuit or a flex circuit where LEDs are attached to the circuits. The lead frame and flex circuit are formed into a three-dimensional shape and are thermally coupled to the tower.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: July 19, 2016
    Assignee: Cree, Inc.
    Inventors: Christopher P. Hussell, John Adam Edmond, Gerald H. Negley, Curt Progl, Mark Edmond, Praneet Athalye, Charles M. Swoboda, Antony Paul van de Ven, Paul Kenneth Pickard, Bart P. Reier, James Michael Lay, Peter E. Lopez, Ed Adams
  • Publication number: 20160165680
    Abstract: Solid state lighting apparatuses, systems, and related methods are described. A solid state lighting apparatus includes an array of solid state light emitters arranged on or over the substrate and a plurality of driving components arranged on or over the substrate. The driving components are configured to independently activate and deactivate at least some of the solid state light emitters of the array of solid state light emitters during a portion of an alternating current (AC) cycle. A method of providing a solid state lighting apparatus includes providing a substrate, mounting an array of solid state light emitters on or over the substrate, and providing a plurality of driving components on or over the substrate. A solid state lighting system includes a solid state lighting apparatus having an array of solid state light emitters, driving components, and a rectifying circuit for rectifying current supplied to the driving components.
    Type: Application
    Filed: December 7, 2015
    Publication date: June 9, 2016
    Inventors: Jeremy Allen Johnson, Andrew Dan Bendtson, Christopher P. Hussell, Kurt S. Wilcox, Craig William Hardin
  • Publication number: 20160161098
    Abstract: Solid state lighting apparatuses, systems, and related methods for improved heat distribution are described. A solid state lighting apparatus can include a substrate and an array of solid state light emitters of varying power arranged on or over the substrate, wherein a predetermined group of the solid state light emitters includes solid state light emitters non-uniformly spaced apart from one another. A method of providing a solid stare lighting apparatus can include providing a substrate, and mounting an array of solid state light emitters of varying power on or over the substrate such that a predetermined group of the solid state light emitters includes solid state light emitters non-uniformly spaced apart from one another.
    Type: Application
    Filed: December 7, 2015
    Publication date: June 9, 2016
    Inventors: Florin A. Tudorica, Christopher P. Hussell