Patents by Inventor Chun-Chen Yeh

Chun-Chen Yeh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9397158
    Abstract: A method is disclosed for forming a semiconductor device. A first opening is formed for an STI on a semiconductor substrate and a first process is performed to deposit first oxide into the first opening. A second opening is formed to remove a portion of the first oxide from the first opening and second process(es) is/are performed to deposit second oxide into the second opening and over a remaining portion of the first oxide. A portion of the semiconductor device is formed over a portion of a surface of the second oxide. A semiconductor device includes an STI including a first oxide formed in a lower portion of a trench of the STI and a second oxide formed in an upper portion of the trench and above the first oxide. The semiconductor device includes a portion of the semiconductor device formed over a portion of the second oxide.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: July 19, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Ming Cai, Dechao Guo, Liyang Song, Chun-chen Yeh
  • Publication number: 20160204257
    Abstract: Self-aligned contacts of a semiconductor device are fabricated by forming a metal gate structure on a portion of a semiconductor layer of a substrate. The metal gate structure contacts inner sidewalls of a gate spacer. A second sacrificial epitaxial layer is formed on a first sacrificial epitaxial layer. The first sacrificial epitaxial layer is adjacent to the gate spacer and is formed on source/drain regions of the semiconductor layer. The first and second sacrificial epitaxial layers are recessed. The recessing exposes at least a portion of the source/drain regions. A first dielectric layer is formed on the exposed portions of the source/drain regions, and over the gate spacer and metal gate structure. At least one cavity within the first dielectric layer is formed above at least one of the exposed portions of source/drain regions. At least one metal contact is formed within the at least one cavity.
    Type: Application
    Filed: March 21, 2016
    Publication date: July 14, 2016
    Inventors: Hong HE, Chiahsun TSENG, Chun-chen YEH, Yunpeng YIN
  • Patent number: 9391200
    Abstract: Techniques and structures for controlling etch-back of a finFET fin are described. One or more layers may be deposited over the fin and etched. Etch-back of a planarization layer may be used to determine a self-limited etch height of one or more layers adjacent the fin and a self-limited etch height of the fin. Strain-inducing material may be formed at regions of the etched fin to induce strain in the channel of a finFET.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: July 12, 2016
    Assignees: STMicroelectronics, Inc., International Business Machines Corporation, GLOBALFOUNDRIES Inc.
    Inventors: Qing Liu, Xiuyu Cai, Ruilong Xie, Chun-chen Yeh
  • Patent number: 9390976
    Abstract: A method of forming a semiconductor device that includes forming a fin structure, and forming an undoped epitaxial semiconductor material on the fin structure. A first portion of undoped epitaxial semiconductor material is formed on the sidewall of at least one of a source region portion and a drain region portion of the fin structure. A second portion of the undoped epitaxial semiconductor material is formed on the recessed surface of a bulk semiconductor substrate that is present at the base of the fin structure. The method further includes forming a doped epitaxial semiconductor material on the undoped epitaxial semiconductor material. The undoped epitaxial semiconductor material and the doped epitaxial semiconductor material provide a source region and drain region.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: July 12, 2016
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, RENESAS ELECTRONICS CORPORATION
    Inventors: Dechao Guo, Shogo Mochizuki, Andreas Scholze, Chun-Chen Yeh
  • Patent number: 9391152
    Abstract: A method of forming a metal-insulator-semiconductor (MIS) contact, a transistor including the MIS contact, and the MIS contact are described. The method includes etching an opening for formation of the contact, the opening extending to an upper surface of a semiconductor region. The method also includes implanting metal ions at a selected depth within the upper surface of the semiconductor region and converting the upper surface of the semiconductor region to a metal oxide insulating layer. The method further includes forming a metal layer on the insulating layer.
    Type: Grant
    Filed: January 20, 2015
    Date of Patent: July 12, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chia-Yu Chen, Zuoguang Liu, Tenko Yamashita, Chun-Chen Yeh
  • Patent number: 9391155
    Abstract: In one embodiment, a semiconductor device is provided that includes a gate structure present on a channel portion of a fin structure. The gate structure includes a dielectric spacer contacting a sidewall of a gate dielectric and a gate conductor. Epitaxial source and drain regions are present on opposing sidewalls of the fin structure, wherein surfaces of the epitaxial source region and the epitaxial drain region that is in contact with the sidewalls of the fin structure are aligned with an outside surface of the dielectric spacer. In some embodiments, the dielectric spacer, the gate dielectric, and the gate conductor of the semiconductor device are formed using a single photoresist mask replacement gate sequence.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: July 12, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hong He, Chiahsun Tseng, Chun-Chen Yeh, Yunpeng Yin
  • Publication number: 20160197072
    Abstract: A semiconductor device which includes: a substrate; a first set of fins above the substrate of a first semiconductor material; a second set of fins above the substrate and of a second semiconductor material different than the first semiconductor material; and an isolation region positioned between the first and second sets of fins, the isolation region having a nitride layer. The isolation region may be an isolation pillar or an isolation trench.
    Type: Application
    Filed: March 17, 2016
    Publication date: July 7, 2016
    Inventors: Qing Liu, Xiuyu Cai, Ruilong Xie, Chun-chen Yeh, Kejia Wang, Daniel Chanemougame
  • Patent number: 9385123
    Abstract: The present invention relates generally to semiconductor devices, and particularly to fabricating a shallow trench isolation (STI) region in fin field effect transistors (FinFETs) having a small fin pitch. According to one embodiment, a method of using selective etching techniques to remove a single fin to form a fin trench and to form an isolation trench having a width approximately equal to a width of the single fin below the removed fin is disclosed. The fin trench and the isolation trench may be filled with isolation material to form an isolation region.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: July 5, 2016
    Assignee: International Business Machines Corporation
    Inventors: Hsueh-Chung Chen, Su Chen Fan, Chiahsun Tseng, Chun-Chen Yeh
  • Patent number: 9385201
    Abstract: An integrated circuit transistor is formed on a substrate. A trench in the substrate is at least partially filed with a metal material to form a source (or drain) contact buried in the substrate. The substrate further includes a source (or drain) region in the substrate which is in electrical connection with the source (or drain) contact. The substrate further includes a channel region adjacent to the source (or drain) region. A gate dielectric is provided on top of the channel region and a gate electrode is provided on top of the gate dielectric. The substrate may be of the silicon on insulator (SOI) or bulk type. The buried source (or drain) contact makes electrical connection to a side of the source (or drain) region using a junction provided at a same level of the substrate as the source (or drain) and channel regions.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: July 5, 2016
    Assignees: STMICROELECTRONICS, INC., GLOBALFOUNDRIES INC, INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Qing Liu, Ruilong Xie, Chun-Chen Yeh, Xiuyu Cai, William J. Taylor
  • Publication number: 20160190322
    Abstract: A large area electrical contact for use in integrated circuits features a non-planar, sloped bottom profile. The sloped bottom profile provides a larger electrical contact area, thus reducing the contact resistance, while maintaining a small contact footprint. The sloped bottom profile can be formed by recessing an underlying layer, wherein the bottom profile can be crafted to have a V-shape, U-shape, crescent shape, or other profile shape that includes at least a substantially sloped portion in the vertical direction. In one embodiment, the underlying layer is an epitaxial fin of a FinFET. A method of fabricating the low-resistance electrical contact employs a thin etch stop liner for use as a hard mask. The etch stop liner, e.g., HfO2, prevents erosion of an adjacent gate structure during the formation of the contact.
    Type: Application
    Filed: December 29, 2014
    Publication date: June 30, 2016
    Inventors: Qing LIU, Ruilong XIE, Xiuyu CAI, Chun-chen YEH
  • Publication number: 20160190325
    Abstract: Tapered source and drain contacts for use in an epitaxial FinFET prevent short circuits and damage to parts of the FinFET during contact processing, thus improving device reliability. The inventive contacts feature tapered sidewalls and a pedestal where electrical contact is made to fins in the source and drain regions. The pedestal also provides greater contact area to the fins, which are augmented by extensions. Raised isolation regions define a valley around the fins. During source/drain contact formation, the valley is lined with a conformal barrier that also covers the fins themselves. The barrier protects underlying local oxide and adjacent isolation regions against gouging while forming the contact. The valley is filled with an amorphous silicon layer that protects the epitaxial fin material from damage during contact formation. A simple tapered structure is used for the gate contact.
    Type: Application
    Filed: December 29, 2014
    Publication date: June 30, 2016
    Inventors: Qing LIU, Nicholas LOUBET, Chun-chen YEH, Ruilong XIE, Xiuyu CAI
  • Publication number: 20160190314
    Abstract: A vertical slit transistor includes raised source, drain, and channel regions in a semiconductor substrate. Two gate electrodes are positioned adjacent respective sidewalls of the semiconductor substrate. A dielectric material separates the gate electrodes from the source and drain regions.
    Type: Application
    Filed: December 31, 2014
    Publication date: June 30, 2016
    Inventors: Qing Liu, Xiuyu Cai, Chun-chen Yeh, Ruilong Xie
  • Publication number: 20160190317
    Abstract: A hetero-channel FinFET device provides enhanced switching performance over a FinFET device having a silicon channel, and is easier to integrate into a fabrication process than is a FinFET device having a germanium channel. A FinFET device featuring the heterogeneous Si/SiGe channel includes a fin having a central region made of silicon and sidewall regions made of SiGe. A hetero-channel pFET device in particular has higher carrier mobility and less gate-induced drain leakage current than either a silicon device or a SiGe device. The hetero-channel FinFET permits the SiGe portion of the channel to have a Ge concentration in the range of about 25-40% and permits the fin height to exceed 40 nm while remaining stable.
    Type: Application
    Filed: December 31, 2014
    Publication date: June 30, 2016
    Inventors: Qing LIU, Ruilong XIE, Chun-chen YEH, Xiuyu CAI
  • Publication number: 20160181254
    Abstract: A method of fabricating an SRAM semiconductor device includes forming first and second FinFETs on an upper surface of a bulk substrate. The first FinFET includes a first source/drain region containing first dopants, and the second FinFET includes a second source/drain region containing second dopants. The method further includes selectively controlling a temperature of the second FinFET with respect to a temperature of the first FinFET during an anneal process to activate the first and second dopants such that the second source/drain region is formed having a different electrical resistance with respect to the first source/drain region.
    Type: Application
    Filed: December 23, 2014
    Publication date: June 23, 2016
    Inventors: Veeraraghavan S. Basker, Dechao Guo, Zuoguang Liu, Tenko Yamashita, Chun-Chen Yeh
  • Publication number: 20160181256
    Abstract: A method of fabricating an SRAM semiconductor device includes forming first and second FinFETs on an upper surface of a bulk substrate. The first FinFET includes a first source/drain region containing first dopants, and the second FinFET includes a second source/drain region containing second dopants. The method further includes selectively controlling a temperature of the second FinFET with respect to a temperature of the first FinFET during an anneal process to activate the first and second dopants such that the second source/drain region is formed having a different electrical resistance with respect to the first source/drain region.
    Type: Application
    Filed: November 30, 2015
    Publication date: June 23, 2016
    Inventors: Veeraraghavan S. Basker, Dechao Guo, Zuoguang Liu, Tenko Yamashita, Chun-Chen Yeh
  • Publication number: 20160181390
    Abstract: The present disclosure is directed to a device and method for reducing the resistance of the middle of the line in a transistor. The transistor has electrical contacts formed above, and electrically connected to, the gate, drain and source. The electrical contact connected to the gate includes a tungsten contact member deposited over the gate, and a copper contact deposited over the tungsten contact member. The electrical contacts connected to the drain and source include tungsten portions deposited over the drain and source regions, and copper contacts deposited over the tungsten portions.
    Type: Application
    Filed: December 23, 2014
    Publication date: June 23, 2016
    Inventors: Qing LIU, Xiuyu CAI, Chun-chen YEH, Ruilong XIE
  • Publication number: 20160181384
    Abstract: The present disclosure is directed to a gate structure for a transistor. The gate structure is formed on a substrate and includes a trench. There are sidewalls that line the trench. The sidewalls have a first dimension at a lower end of the trench and a second dimension at an upper end of the trench. The first dimension being larger than the second dimension, such that the sidewalls are tapered from a lower region to an upper region. A high k dielectric liner is formed on the sidewalls and a conductive liner is formed on the high k dielectric liner. A conductive material is in the trench and is adjacent to the conductive liner. The conductive material has a first dimension at the lower end of the trench that is smaller than a second dimension at the upper end of the trench.
    Type: Application
    Filed: December 23, 2014
    Publication date: June 23, 2016
    Inventors: Qing LIU, Xiuyu CAI, Ruilong XIE, Chun-chen YEH
  • Publication number: 20160181381
    Abstract: A FinFET device includes a semiconductor fin, a gate electrode extending over a channel of the fin and sidewall spacers on each side of the gate electrode. A dielectric material is positioned on each side of a bottom portion of said fin, with an oxide material on each side of the fin overlying the dielectric material. A recessed region, formed in the fin on each side of the channel region, is delimited by the oxide material. A raised source region fills the recessed region and extends from the fin on a first side of the gate electrode to cover the oxide material to a height which is in contact with the sidewall spacer. A raised drain region fills the recessed region and extends from the fin on a second side of the gate electrode to cover the oxide material to a height which is in contact with the sidewall spacer.
    Type: Application
    Filed: December 19, 2014
    Publication date: June 23, 2016
    Applicants: STMicroelectronics, Inc., International Business Machines Corporation, GlobalFoundries Inc
    Inventors: Qing Liu, Xiuyu Cai, Ruilong Xie, Chun-Chen Yeh
  • Publication number: 20160163850
    Abstract: A FinFET transistor includes a fin of semiconductor material with a transistor gate electrode extending over a channel region. Raised source and drain regions of first epitaxial growth material extending from the fin on either side of the transistor gate electrode. Source and drain contact openings extend through a pre-metallization dielectric material to reach the raised source and drain regions. Source and drain contact regions of second epitaxial growth material extend from the first epitaxial growth material at the bottom of the source and drain contact openings. A metal material fills the source and drain contact openings to form source and drain contacts, respectively, with the source and drain contact regions. The drain contact region may be offset from the transistor gate electrode by an offset distance sufficient to provide a laterally diffused metal oxide semiconductor (LDMOS) configuration within the raised source region of first epitaxial growth material.
    Type: Application
    Filed: December 4, 2014
    Publication date: June 9, 2016
    Applicants: STMICROELECTRONICS, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBALFOUNDRIES INC
    Inventors: Qing Liu, Ruilong Xie, Chun-Chen Yeh, Xiuyu Cai
  • Patent number: 9362407
    Abstract: A technique relates to a dual epitaxial process a device. A first spacer is disposed on a substrate, dummy gate, and hardmask. A first area extends in a first direction from the gate and a second area extends in an opposite direction. A doped intermediate spacer is disposed on the first spacer. A first region is opened on the substrate by removing first spacer and intermediate spacer at the first region. A first epitaxial layer is disposed in the first region. The intermediate spacer is removed from first area. A second spacer is disposed on the intermediate spacer. A second region is opened on the substrate by removing the first spacer, intermediate spacer, and second spacer. A second epitaxial layer is disposed in second region. The width of the second epitaxial layer is enlarged by annealing causing dopant in the intermediate spacer layer to flow into the second epitaxial layer.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: June 7, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Veeraraghavan S. Basker, Zuoguang Liu, Tenko Yamashita, Chun-Chen Yeh