Patents by Inventor Chun-Chen Yeh

Chun-Chen Yeh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9502523
    Abstract: A semiconductor device includes a semiconductor-on-insulator wafer having a buried oxide layer. The buried oxide layer includes therein opposing etch barrier regions and a gate region between the etch barrier regions. The semiconductor device further includes at least one nanowire having a channel portion interposed between opposing source/drain portions. The channel portion is suspended in the gate region. A gate electrode is formed in the gate region, and completely surrounds all surfaces of the suspended nanowire. The buried oxide layer comprises a first electrical insulating material, and the etch barrier regions comprising a second electrical insulating material different from the first electrical insulating material.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: November 22, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Veeraraghavan S. Basker, Zuoguang Liu, Tenko Yamashita, Chun-Chen Yeh
  • Patent number: 9502302
    Abstract: Dummy gates are removed from a pre-metal layer to produce a first opening (with a first length) and a second opening (with a second length longer than the first length). Work function metal for a metal gate electrode is provided in the first and second openings. Tungsten is deposited to fill the first opening and conformally line the second opening, thus leaving a third opening. The thickness of the tungsten layer substantially equals the length of the first opening. The third opening is filled with an insulating material. The tungsten is then recessed in both the first and second openings using a dry etch to substantially a same depth from a top surface of the pre-metal layer to complete the metal gate electrode. Openings left following the recess operation are then filled with a dielectric material forming a cap on the gate stack which includes the metal gate electrode.
    Type: Grant
    Filed: October 13, 2014
    Date of Patent: November 22, 2016
    Assignees: STMicroelectronics, Inc., GlobalFoundries Inc, International Business Machines Corporation
    Inventors: Qing Liu, Ruilong Xie, Chun-Chen Yeh
  • Patent number: 9496185
    Abstract: Fabricating a semiconductor device includes providing a strained semiconductor material (SSM) layer disposed on a dielectric layer, forming a first plurality of fins on the SSOI structure, at least one fin of the first plurality of fins is in a nFET region and at least one fin is in a pFET region, etching portions of the dielectric layer under portions of the SSM layer of the at least one fin in the pFET region, filling areas cleared by the etching, forming a second plurality of fins from the at least one fin in the nFET region such that each fin comprises a portion of the SSM layer disposed on the dielectric layer, and forming a third plurality of fins from the at least one fin in the pFET region such that each fin comprises a portion of the SSM layer disposed on a flowable oxide.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: November 15, 2016
    Assignees: International Business Machines Corporation, Globalfoundries, Inc., STMicroelectronics, Inc.
    Inventors: Xiuyu Cai, Qing Liu, Ruilong Xie, Chun-Chen Yeh
  • Publication number: 20160329214
    Abstract: A metal layer is deposited over an underlying material layer. The metal layer includes an elemental metal that can be converted into a dielectric metal-containing compound by plasma oxidation and/or nitridation. A hard mask portion is formed over the metal layer. Plasma oxidation or nitridation is performed to convert physically exposed surfaces of the metal layer into the dielectric metal-containing compound. The sequence of a surface pull back of the hard mask portion, trench etching, another surface pull back, and conversion of top surfaces into the dielectric metal-containing compound are repeated to form a line pattern having a spacing that is not limited by lithographic minimum dimensions.
    Type: Application
    Filed: July 18, 2016
    Publication date: November 10, 2016
    Inventors: Chiahsun Tseng, David V. Horak, Chun-chen Yeh, Yunpeng Yin
  • Patent number: 9484262
    Abstract: Effective transfer of stress to a channel of a fin field effect transistor is provided by forming stress-generating active semiconductor regions that function as a source region and a drain region on a top surface of a single crystalline semiconductor layer. A dielectric material layer is formed on a top surface of the semiconductor layer between semiconductor fins. A gate structure is formed across the semiconductor fins, and the dielectric material layer is patterned employing the gate structure as an etch mask. A gate spacer is formed around the gate stack, and physically exposed portions of the semiconductor fins are removed by an etch. Stress-generating active semiconductor regions are formed by selective epitaxy from physically exposed top surfaces of the semiconductor layer, and apply stress to remaining portions of the semiconductor fins that include channels.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: November 1, 2016
    Assignee: International Business Machines Corporation
    Inventors: Veeraraghavan S. Basker, Akira Hokazono, Hiroshi Itokawa, Tenko Yamashita, Chun-chen Yeh
  • Patent number: 9484402
    Abstract: A method is disclosed for forming a semiconductor device. A first opening is formed for an STI on a semiconductor substrate and a first process is performed to deposit first oxide into the first opening. A second opening is formed to remove a portion of the first oxide from the first opening and second process(es) is/are performed to deposit second oxide into the second opening and over a remaining portion of the first oxide. A portion of the semiconductor device is formed over a portion of a surface of the second oxide. A semiconductor device includes an STI including a first oxide formed in a lower portion of a trench of the STI and a second oxide formed in an upper portion of the trench and above the first oxide. The semiconductor device includes a portion of the semiconductor device formed over a portion of the second oxide.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: November 1, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Ming Cai, Dechao Guo, Liyang Song, Chun-chen Yeh
  • Patent number: 9484440
    Abstract: Semiconductor devices having non-merged fin extensions and methods for forming the same. Methods for forming semiconductor devices include forming fins on a substrate; forming a dummy gate over the fins, leaving a source and drain region exposed; etching the fins below a surface level of a surrounding insulator layer; and epitaxially growing fin extensions from the etched fins.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: November 1, 2016
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, RENESAS ELECTRONICS CORPORATION
    Inventors: Hong He, Shogo Mochizuki, Chiahsun Tseng, Chun-Chen Yeh, Yunpeng Yin
  • Publication number: 20160315183
    Abstract: Embodiments are directed to forming a structure comprising at least one fin, a gate, and a spacer, applying an annealing process to the structure to create a gap between the at least one fin and the spacer, and growing an epitaxial semiconductor layer in the gap between the spacer and the at least one fin.
    Type: Application
    Filed: June 30, 2016
    Publication date: October 27, 2016
    Inventors: Veeraraghavan S. Basker, Zuoguang Liu, Tenko Yamashita, Chun-chen Yeh
  • Publication number: 20160314976
    Abstract: Embodiments are directed to a method of forming a dielectric region of a fin-type field effect transistor (FinFET). The method includes forming at least one fin, and forming a dielectric region adjacent a lower portion of the at least one fin, wherein the dielectric region includes a top surface. The method further includes forming a blocking layer on the top surface of the dielectric region, wherein the blocking layer is configured to prevent at least one subsequent FinFET fabrication operation from impacting the top surface of the dielectric region.
    Type: Application
    Filed: June 30, 2016
    Publication date: October 27, 2016
    Inventors: Dechao Guo, Zuoguang Liu, Tenko Yamashita, Chun-Chen Yeh
  • Patent number: 9472407
    Abstract: A method for fabricating a field effect transistor device includes depositing a hardmask over a semiconductor layer depositing a metallic alloy layer over the hardmask, defining a semiconductor fin, depositing a dummy gate stack material layer conformally on exposed portions of the fin, patterning a dummy gate stack by removing portions of the dummy gate stack material using an etching process that selectively removes exposed portions of the dummy gate stack without appreciably removing portions of the metallic alloy layer, removing exposed portions of the metallic alloy layer, forming spacers adjacent to the dummy gate stack, forming source and drain regions on exposed regions of the semiconductor fin, removing the dummy gate stack, removing exposed portions of the metallic alloy layer, and forming a gate stack conformally over exposed portions of the insulator layer and the semiconductor fin.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: October 18, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hemanth Jagannathan, Sanjay C. Mehta, Junli Wang, Chun-Chen Yeh, Stefan Schmitz
  • Patent number: 9466722
    Abstract: A large area electrical contact for use in integrated circuits features a non-planar, sloped bottom profile. The sloped bottom profile provides a larger electrical contact area, thus reducing the contact resistance, while maintaining a small contact footprint. The sloped bottom profile can be formed by recessing an underlying layer, wherein the bottom profile can be crafted to have a V-shape, U-shape, crescent shape, or other profile shape that includes at least a substantially sloped portion in the vertical direction. In one embodiment, the underlying layer is an epitaxial fin of a FinFET. A method of fabricating the low-resistance electrical contact employs a thin etch stop liner for use as a hard mask. The etch stop liner, e.g., HfO2, prevents erosion of an adjacent gate structure during the formation of the contact.
    Type: Grant
    Filed: December 29, 2014
    Date of Patent: October 11, 2016
    Assignees: STMICROELECTRONICS, INC., INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBALFOUNDRIES INC.
    Inventors: Qing Liu, Ruilong Xie, Xiuyu Cai, Chun-chen Yeh
  • Publication number: 20160293494
    Abstract: A method for making a semiconductor device is provided. Raised source and drain regions are formed with a tensile strain-inducing material, after thermal treatment to form source drain extension regions, to thereby preserve the strain-inducing material in desired substitutional states.
    Type: Application
    Filed: June 13, 2016
    Publication date: October 6, 2016
    Inventors: Xiuyu Cai, Qing Liu, Ruilong Xie, Chun-Chen Yeh
  • Publication number: 20160293761
    Abstract: Techniques and structures for controlling etch-back of a finFET fin are described. One or more layers may be deposited over the fin and etched. Etch-back of a planarization layer may be used to determine a self-limited etch height of one or more layers adjacent the fin and a self-limited etch height of the fin. Strain-inducing material may be formed at regions of the etched fin to induce strain in the channel of a finFET.
    Type: Application
    Filed: June 13, 2016
    Publication date: October 6, 2016
    Inventors: Qing Liu, Xiuyu Cai, Ruilong Xie, Chun-chen Yeh
  • Patent number: 9460969
    Abstract: A technique relates to fabricating a macro for measurements utilized in dual spacer, dual epitaxial transistor devices. The macro is fabricated according to a fabrication process. The macro is a test layout of a semiconductor structure having n-p bumps at junctions between NFET areas and PFET areas. Optical critical dimension (OCD) spectroscopy is performed to obtain the measurements of the n-p bumps on the macro. An amount of chemical mechanical polishing is determined to remove the n-p bumps on the macro based on the measurements of the n-p bumps on the macro. Chemical mechanical polishing is performed to remove the n-p bumps on the macro. The amount previously determined for the macro is utilized to perform chemical mechanical polishing for each of the dual spacer, dual epitaxial layer transistor devices having been fabricated under the fabrication process of the macro in which the fabrication process produced the n-p bumps.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: October 4, 2016
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBALFOUNDRIES INC., STMICROELECTRONICS, INC.
    Inventors: Xiuyu Cai, Qing Liu, Ruilong Xie, Chun-Chen Yeh
  • Publication number: 20160284607
    Abstract: Fabricating a semiconductor device includes providing a strained semiconductor material (SSM) layer disposed on a dielectric layer, forming a first plurality of fins on the SSOI structure, at least one fin of the first plurality of fins is in a nFET region and at least one fin is in a pFET region, etching portions of the dielectric layer under portions of the SSM layer of the at least one fin in the pFET region, filling areas cleared by the etching, forming a second plurality of fins from the at least one fin in the nFET region such that each fin comprises a portion of the SSM layer disposed on the dielectric layer, and forming a third plurality of fins from the at least one fin in the pFET region such that each fin comprises a portion of the SSM layer disposed on a flowable oxide.
    Type: Application
    Filed: March 27, 2015
    Publication date: September 29, 2016
    Inventors: Xiuyu Cai, Qing Liu, Ruilong Xie, Chun-Chen Yeh
  • Publication number: 20160284599
    Abstract: An integrated circuit transistor is formed on a substrate. A trench in the substrate is at least partially filled with a metal material to form a source (or drain) contact buried in the substrate. The substrate further includes a source (or drain) region in the substrate which is in electrical connection with the source (or drain) contact. The substrate further includes a channel region adjacent to the source (or drain) region. A gate dielectric is provided on top of the channel region and a gate electrode is provided on top of the gate dielectric. The substrate may be of the silicon on insulator (SOI) or bulk type. The buried source (or drain) contact makes electrical connection to a side of the source (or drain) region using a junction provided at a same level of the substrate as the source (or drain) and channel regions.
    Type: Application
    Filed: June 10, 2016
    Publication date: September 29, 2016
    Inventors: Qing Liu, Ruilong Xie, Chun-Chen Yeh, Xiuyu Cai, William J. Taylor
  • Publication number: 20160284701
    Abstract: A semiconductor device including a gate structure on a channel region portion of a fin structure, and at least one of an epitaxial source region and an epitaxial drain region on a source region portion and a drain region portion of the fin structure. At least one of the epitaxial source region portion and the epitaxial drain region portion include a first concentration doped portion adjacent to the fin structure, and a second concentration doped portion on the first concentration doped portion. The second concentration portion has a greater dopant concentration than the first concentration doped portion. An extension dopant region extending into the channel portion of the fin structure having an abrupt dopant concentration gradient of n-type or p-type dopants of 7 nm per decade or greater.
    Type: Application
    Filed: June 1, 2016
    Publication date: September 29, 2016
    Inventors: DECHAO GUO, SHOGO MOCHIZUKI, ANDREAS SCHOLZE, CHUN-CHEN YEH
  • Publication number: 20160284820
    Abstract: A technique relates to a dual epitaxial process a device. A first spacer is disposed on a substrate, dummy gate, and hardmask. A first area extends in a first direction from the gate and a second area extends in an opposite direction. A doped intermediate spacer is disposed on the first spacer. A first region is opened on the substrate by removing first spacer and intermediate spacer at the first region. A first epitaxial layer is disposed in the first region. The intermediate spacer is removed from first area. A second spacer is disposed on the intermediate spacer. A second region is opened on the substrate by removing the first spacer, intermediate spacer, and second spacer. A second epitaxial layer is disposed in second region. The width of the second epitaxial layer is enlarged by annealing causing dopant in the intermediate spacer layer to flow into the second epitaxial layer.
    Type: Application
    Filed: June 24, 2015
    Publication date: September 29, 2016
    Inventors: Veeraraghavan S. Basker, Zuoguang Liu, Tenko Yamashita, Chun-Chen Yeh
  • Publication number: 20160284822
    Abstract: A method for making a semiconductor device includes forming laterally spaced-apart semiconductor fins above a substrate. At least one dielectric layer is formed adjacent an end portion of the semiconductor fins and within the space between adjacent semiconductor fins. A pair of sidewall spacers is formed adjacent outermost semiconductor fins at the end portion of the semiconductor fins. The at least one dielectric layer and end portion of the semiconductor fins between the pair of sidewall spacers are removed. Source/drain regions are formed between the pair of sidewall spacers.
    Type: Application
    Filed: June 10, 2016
    Publication date: September 29, 2016
    Inventors: Xiuyu Cai, Qing Liu, Ruilong Xie, Chun-Chen Yeh
  • Publication number: 20160284602
    Abstract: A technique relates to fabricating a macro for measurements utilized in dual spacer, dual epitaxial transistor devices. The macro is fabricated according to a fabrication process. The macro is a test layout of a semiconductor structure having n-p bumps at junctions between NFET areas and PFET areas. Optical critical dimension (OCD) spectroscopy is performed to obtain the measurements of the n-p bumps on the macro. An amount of chemical mechanical polishing is determined to remove the n-p bumps on the macro based on the measurements of the n-p bumps on the macro. Chemical mechanical polishing is performed to remove the n-p bumps on the macro. The amount previously determined for the macro is utilized to perform chemical mechanical polishing for each of the dual spacer, dual epitaxial layer transistor devices having been fabricated under the fabrication process of the macro in which the fabrication process produced the n-p bumps.
    Type: Application
    Filed: March 26, 2015
    Publication date: September 29, 2016
    Inventors: Xiuyu Cai, Qing Liu, Ruilong Xie, Chun-Chen Yeh