Patents by Inventor Chun-Lin Tsai

Chun-Lin Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160141418
    Abstract: A device includes a buried well region and a first HVW region of the first conductivity, and an insulation region over the first HVW region. A drain region of the first conductivity type is disposed on a first side of the insulation region and in a top surface region of the first HVW region. A first well region and a second well region of a second conductivity type opposite the first conductivity type are on the second side of the insulation region. A second HVW region of the first conductivity type is disposed between the first and the second well regions, wherein the second HVW region is connected to the buried well region. A source region of the first conductivity type is in a top surface region of the second HVW region, wherein the source region, the drain region, and the buried well region form a JFET.
    Type: Application
    Filed: January 22, 2016
    Publication date: May 19, 2016
    Inventors: Jen-Hao Yeh, Chih-Chang Cheng, Ru-Yi Su, Ker Hsiao Huo, Po-Chih Chen, Fu-Chih Yang, Chun-Lin Tsai
  • Patent number: 9343542
    Abstract: A method for making an enhancement-mode transistor is described. The method includes forming a first III-V compound layer on a substrate and forming a second III-V compound layer on the first III-V compound layer. The second III-V compound layer is different from the first III-V compound layer. A gate stack is formed thereon. The forming of the gate stack further includes forming a diode having a pair of a n-type doped III-V compound layer and a p-type doped III-V compound layer. Source and drain features are formed on the second III-V compound layer and interposed by the gate stack.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: May 17, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Alexander Kalnitsky, Chih-Wen Hsiung, Chun Lin Tsai
  • Patent number: 9331195
    Abstract: The present disclosure provides a method for fabricating a high-voltage semiconductor device. The method includes designating first, second, and third regions in a substrate. The first and second regions are regions where a source and a drain of the semiconductor device will be formed, respectively. The third region separates the first and second regions. The method further includes forming a slotted implant mask layer at least partially over the third region. The method also includes implanting dopants into the first, second, and third regions. The slotted implant mask layer protects portions of the third region therebelow during the implanting. The method further includes annealing the substrate in a manner to cause diffusion of the dopants in the third region.
    Type: Grant
    Filed: January 13, 2014
    Date of Patent: May 3, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ru-Yi Su, Fu-Chih Yang, Chun Lin Tsai, Chih-Chang Cheng, Ruey-Hsin Liu
  • Publication number: 20160111498
    Abstract: A method of making a high voltage metal-oxide-semiconductor laterally diffused device (HV LDMOS), particularly an insulated gate bipolar junction transistor (IGBT), is disclosed. The device includes a semiconductor substrate, a gate structure formed on the substrate, a source and a drain formed in the substrate on either side of the gate structure, a first doped well formed in the substrate, and a second doped well formed in the first well. The gate, source, second doped well, a portion of the first well, and a portion of the drain structure are surrounded by a deep trench isolation feature and an implanted oxygen layer in the silicon substrate.
    Type: Application
    Filed: December 14, 2015
    Publication date: April 21, 2016
    Inventors: Ker-Hsiao Huo, Chih-Chang Cheng, Fu-Chih Yang, Jen-Hao Yeh, Chun Lin Tsai
  • Patent number: 9306012
    Abstract: Among other things, one or more semiconductor devices and techniques for forming such semiconductor devices are provided. The semiconductor device comprises a strip-ground field plate. The strip-ground field plate is connected to a source region of the semiconductor device and/or a ground plane. The strip-ground field plate provides a release path for a gate edge electric field. The release path directs an electrical field away from a gate region of the semiconductor device. In this way, breakdown voltage and gate charge are improved.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: April 5, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Ru-Yi Su, Po-Chih Chen, Ming-Cheng Lin, Fu-Chih Yang, Chun Lin Tsai
  • Patent number: 9299694
    Abstract: The present disclosure provides a semiconductor device that includes a transistor including a substrate, a source, a drain, and a gate, and a fuse stacked over the transistor. The fuse includes an anode contact coupled to the drain of the transistor, a cathode contact, and a resistor coupled to the cathode contact and the anode contact via a first Schottky diode and a second Schottky diode, respectively. A method of fabricating such semiconductor devices is also provided.
    Type: Grant
    Filed: November 4, 2013
    Date of Patent: March 29, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Chang Cheng, Ruey-Hsin Liu, Ru-Yi Su, Fu-Chih Yang, Chun Lin Tsai
  • Publication number: 20160056303
    Abstract: A device includes a p-well region, and a first High-Voltage N-type Well (HVNW) region and a second HVNW region contacting opposite edges of the p-well region. A P-type Buried Layer (PBL) has opposite edges in contact with the first HVNW region and the second HVNW region. An n-type buried well region is underlying the PBL. The p-well region and the n-type buried well region are in contact with a top surface and a bottom surface, respectively, of the PBL. The device further includes a n-well region in a top portion of the p-well region, an n-type source region in the n-well region, a gate stack overlapping a portion of the p-well region and a portion of the second HVNW region, and a channel region under the gate stack. The channel region interconnects the n-well region and the second HVNW region.
    Type: Application
    Filed: November 4, 2015
    Publication date: February 25, 2016
    Inventors: Jen-Hao Yeh, Chih-Chang Cheng, Ru-Yi Su, Ker-Hsiao Huo, Po-Chih Chen, Fu-Chih Yang, Chun Lin Tsai
  • Patent number: 9263565
    Abstract: A semiconductor structure comprises a first layer. The first layer comprises a first III-V semiconductor material. The semiconductor structure also comprises a second layer over the first layer. The second layer comprises a second III-V semiconductor material different from the first III-V semiconductor material. The semiconductor structure further comprises an insulating layer over the second layer. The insulating layer is patterned to expose a portion of the first layer. The exposed portion of the first layer comprises electrons of the second layer. The semiconductor structure additionally comprises an intermetallic compound over the exposed portion of the first layer.
    Type: Grant
    Filed: December 31, 2014
    Date of Patent: February 16, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Po-Chih Chen, Jiun-Lei Jerry Yu, Fu-Wei Yao, Chun-Wei Hsu, Fu-Chih Yang, Chun Lin Tsai
  • Patent number: 9257533
    Abstract: A method for fabricating a high voltage semiconductor transistor includes growing a first well region over a substrate having a first conductivity type, the first well region having a second type of conductivity. First, second and third portions of a second well region having the first type of conductivity are doped into the first well region. A first insulating layer is grown in and over the first well portion within the second well region. A second insulating layer is grown on the substrate over the third portion of the second well region. An anti-punch through region is doped into the first well region. A gate structure is formed on the substrate. A source region is formed in the first portion of the second well region on an opposite side of the gate structure from the first insulating layer. A drain region is formed in the first well region.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: February 9, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ker Hsiao Huo, Chih-Chang Cheng, Ru-Yi Su, Jen-Hao Yeh, Fu-Chih Yang, Chun Lin Tsai
  • Patent number: 9257979
    Abstract: A device includes a buried well region and a first HVW region of the first conductivity, and an insulation region over the first HVW region. A drain region of the first conductivity type is disposed on a first side of the insulation region and in a top surface region of the first HVW region. A first well region and a second well region of a second conductivity type opposite the first conductivity type are on the second side of the insulation region. A second HVW region of the first conductivity type is disposed between the first and the second well regions, wherein the second HVW region is connected to the buried well region. A source region of the first conductivity type is in a top surface region of the second HVW region, wherein the source region, the drain region, and the buried well region form a JFET.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: February 9, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jen-Hao Yeh, Chih-Chang Cheng, Ru-Yi Su, Ker Hsiao Huo, Po-Chih Chen, Fu-Chih Yang, Chun-Lin Tsai
  • Patent number: 9224827
    Abstract: Provided is a semiconductor device. The semiconductor device includes a resistor and a voltage protection device. The resistor has a spiral shape. The resistor has a first portion and a second portion. The voltage protection device includes a first doped region that is electrically coupled to the first portion of the resistor. The voltage protection device includes a second doped region that is electrically coupled to the second portion of the resistor. The first and second doped regions have opposite doping polarities.
    Type: Grant
    Filed: November 7, 2013
    Date of Patent: December 29, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Chang Cheng, Ruey-Hsin Liu, Chih-Wen Yao, Ru-Yi Su, Fu-Chih Yang, Chun Lin Tsai
  • Patent number: 9224732
    Abstract: A method of forming a device includes forming a buried well region of a first dopant type in a substrate. A well region of the first dopant type is formed over the buried well region. A first well region of a second dopant type is formed between the well region of the first dopant type and the buried well region of the first dopant type. A second well region of the second dopant type is formed in the well region of the first dopant type. An isolation structure is formed at least partially in the well region of the first dopant type. A first gate electrode is formed over the isolation structure and the second well region of the second dopant type.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: December 29, 2015
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih-Chang Cheng, Ruey-Hsin Liu, Chih-Wen Yao, Chia-Chin Shen, Eric Huang, Fu Chin Yang, Chun Lin Tsai, Hsiao-Chin Tuan
  • Patent number: 9214547
    Abstract: A high voltage metal-oxide-semiconductor laterally diffused device (HV LDMOS), particularly an insulated gate bipolar junction transistor (IGBT), and a method of making it are provided in this disclosure. The device includes a semiconductor substrate, a gate structure formed on the substrate, a source and a drain formed in the substrate on either side of the gate structure, a first doped well formed in the substrate, and a second doped well formed in the first well. The gate, source, second doped well, a portion of the first well, and a portion of the drain structure are surrounded by a deep trench isolation feature and an implanted oxygen layer in the silicon substrate.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: December 15, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ker Hsiao Huo, Chih-Chang Cheng, Ru-Yi Su, Jen-Hao Yeh, Fu-Chih Yang, Chun Lin Tsai
  • Publication number: 20150349087
    Abstract: A method of forming a high electron mobility transistor (HEMT) includes epitaxially growing a second III-V compound layer on a first III-V compound layer. The method further includes partially etching the second III-V compound layer to form two through holes in the second III-V compound layer. Additionally, the method includes forming a silicon feature in each of two through holes. Furthermore, the method includes depositing a metal layer on each silicon feature. Moreover, the method includes annealing the metal layer and each silicon feature to form corresponding salicide source/drain features. The method also includes forming a gate electrode over the second III-V compound layer between the salicide source/drain features.
    Type: Application
    Filed: August 13, 2015
    Publication date: December 3, 2015
    Inventors: Fu-Wei YAO, Chen-Ju YU, King-Yuen WONG, Chun-Wei HSU, Jiun-Lei Jerry YU, Fu-Chih YANG, Chun Lin TSAI
  • Patent number: 9190535
    Abstract: A device includes a p-well region, and a first High-Voltage N-type Well (HVNW) region and a second HVNW region contacting opposite edges of the p-well region. A P-type Buried Layer (PBL) has opposite edges in contact with the first HVNW region and the second HVNW region. An n-type buried well region is underlying the PBL. The p-well region and the n-type buried well region are in contact with a top surface and a bottom surface, respectively, of the PBL. The device further includes a n-well region in a top portion of the p-well region, an n-type source region in the n-well region, a gate stack overlapping a portion of the p-well region and a portion of the second HVNW region, and a channel region under the gate stack. The channel region interconnects the n-well region and the second HVNW region.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: November 17, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jen-Hao Yeh, Chih-Chang Cheng, Ru-Yi Su, Ker Hsiao Huo, Po-Chih Chen, Fu-Chih Yang, Chun-Lin Tsai
  • Patent number: 9190476
    Abstract: A lateral DMOS transistor is provided with a source region, a drain region, and a conductive gate. The drain region is laterally separated from the conductive gate by a field oxide that encroaches beneath the conductive gate. The lateral DMOS transistor may be formed in a racetrack-like configuration with the conductive gate including a rectilinear portion and a curved portion and surrounded by the source region. Disposed between the conductive gate and the trapped drain is one or more levels of interlevel dielectric material. One or more groups of isolated conductor leads are formed in or on the dielectric layers and may be disposed at multiple device levels. The isolated conductive leads increase the breakdown voltage of the lateral DMOS transistor particularly in the curved regions where electric field crowding can otherwise degrade breakdown voltages.
    Type: Grant
    Filed: May 6, 2015
    Date of Patent: November 17, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ker Hsiao Huo, Ru-Yi Su, Fu-Chih Yang, Chun Lin Tsai, Chih-Chang Cheng
  • Publication number: 20150325678
    Abstract: A method for making an enhancement-mode transistor is described. The method includes forming a first III-V compound layer on a substrate and forming a second III-V compound layer on the first III-V compound layer. The second III-V compound layer is different from the first III-V compound layer. A gate stack is formed thereon. The forming of the gate stack further includes forming a diode having a pair of a n-type doped III-V compound layer and a p-type doped III-V compound layer. Source and drain features are formed on the second III-V compound layer and interposed by the gate stack.
    Type: Application
    Filed: November 21, 2014
    Publication date: November 12, 2015
    Inventors: Alexander Kalnitsky, Chih-Wen Hsiung, Chun Lin Tsai
  • Publication number: 20150295055
    Abstract: A transistor includes an isolation region surrounding an active region. The transistor also includes a gate dielectric layer over a portion of the active region. The transistor further includes a gate electrode over the gate dielectric layer. The portion of the active region under the gate dielectric layer includes a channel region between a drain region and a source region, and at least one wing region adjoining the channel region. The at least one wing region has a base edge adjoining the channel region. The at least one wing region is polygonal or curved.
    Type: Application
    Filed: June 26, 2015
    Publication date: October 15, 2015
    Inventors: Chen-Liang CHU, Fei-Yuh CHEN, Yi-Sheng CHEN, Shih-Kuang HSIAO, Chun Lin TSAI, Kong-Beng THEI
  • Publication number: 20150262995
    Abstract: Some embodiments relate to a semiconductor device. The semiconductor device includes a drain region and a channel region surrounding the drain region. A source region surrounds the channel region such that the channel region separates the drain region from the source region. A gate electrode is arranged over the channel region and has an inner edge proximate to the drain. A resistor structure, which is made up of a curved or polygonal path of resistive material, is arranged over the drain and is coupled to the drain. The resistor structure is perimeterally bounded by the inner edge of the gate electrode.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 17, 2015
    Inventors: Ker Hsiao Huo, Fu-Chih Yang, Chun Lin Tsai, Yi-Min Chen, Chih-Yuan Chan
  • Publication number: 20150263164
    Abstract: A lateral DMOS transistor is provided with a source region, a drain region, and a conductive gate. The drain region is laterally separated from the conductive gate by a field oxide that encroaches beneath the conductive gate. The lateral DMOS transistor may be formed in a racetrack-like configuration with the conductive gate including a rectilinear portion and a curved portion and surrounded by the source region. Disposed between the conductive gate and the trapped drain is one or more levels of interlevel dielectric material. One or more groups of isolated conductor leads are formed in or on the dielectric layers and may be disposed at multiple device levels. The isolated conductive leads increase the breakdown voltage of the lateral DMOS transistor particularly in the curved regions where electric field crowding can otherwise degrade breakdown voltages.
    Type: Application
    Filed: May 6, 2015
    Publication date: September 17, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ker Hsiao HUO, Ru-Yi SU, Fu-Chih YANG, Chun Lin TSAI, Chih-Chang CHENG