Patents by Inventor Chun-Lin Tsai

Chun-Lin Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9601585
    Abstract: A transistor includes an isolation region surrounding an active region. The transistor also includes a gate dielectric layer over a portion of the active region. The transistor further includes a gate electrode over the gate dielectric layer. The portion of the active region under the gate dielectric layer includes a channel region between a drain region and a source region, and at least one wing region adjoining the channel region. The at least one wing region has a base edge adjoining the channel region. The at least one wing region is polygonal or curved.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: March 21, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chen-Liang Chu, Fei-Yuh Chen, Yi-Sheng Chen, Shih-Kuang Hsiao, Chun Lin Tsai, Kong-Beng Thei
  • Publication number: 20170077255
    Abstract: A high electron mobility transistor (HEMT) includes a first III-V compound layer. A second III-V compound layer is disposed on the first III-V compound layer and is different from the first III-V compound layer in composition. A salicide source feature and a salicide drain feature are in contact with the first III-V compound layer through the second III-V compound layer. A gate electrode is disposed over a portion of the second III-V compound layer between the salicide source feature and the salicide drain feature.
    Type: Application
    Filed: November 28, 2016
    Publication date: March 16, 2017
    Inventors: Fu-Wei YAO, Chen-Ju YU, King-Yuen WONG, Chun-Wei HSU, Jiun-Lei Jerry YU, Fu-Chih YANG, Chun-Lin TSAI
  • Patent number: 9570598
    Abstract: A semiconductor structure comprises a first layer. The first layer comprises a first III-V semiconductor material. The semiconductor structure also comprises a second layer over the first layer. The second layer comprises a second III-V semiconductor material different from the first III-V semiconductor material. The semiconductor structure further comprises an insulating layer over the second layer. The insulating layer is patterned to expose a portion of the first layer. The exposed portion of the first layer comprises electrons of the second layer. The semiconductor structure additionally comprises an intermetallic compound over the exposed portion of the first layer.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: February 14, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Po-Chih Chen, Chun-Wei Hsu, Fu-Chih Yang, Fu-Wei Yao, Chun Lin Tsai, Jiun-Lei Jerry Yu
  • Patent number: 9508807
    Abstract: A method of forming a high electron mobility transistor (HEMT) includes epitaxially growing a second III-V compound layer on a first III-V compound layer. The method further includes partially etching the second III-V compound layer to form two through holes in the second III-V compound layer. Additionally, the method includes forming a silicon feature in each of two through holes. Furthermore, the method includes depositing a metal layer on each silicon feature. Moreover, the method includes annealing the metal layer and each silicon feature to form corresponding salicide source/drain features. The method also includes forming a gate electrode over the second III-V compound layer between the salicide source/drain features.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: November 29, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Fu-Wei Yao, Chen-Ju Yu, King-Yuen Wong, Chun-Wei Hsu, Jiun-Lei Jerry Yu, Fu-Chih Yang, Chun Lin Tsai
  • Publication number: 20160308023
    Abstract: A method of forming a high electron mobility transistor (HEMT) that includes epitaxially growing a second III-V compound layer on a first III-V compound layer. A carrier channel is located between the first III-V compound layer and the second III-V compound layer. A source feature and a drain feature are formed on the second III-V compound layer. A p-type layer is deposited on a portion of the second III-V compound layer between the source feature and the drain feature. A gate electrode is formed on a portion of the p-type layer.
    Type: Application
    Filed: June 24, 2016
    Publication date: October 20, 2016
    Inventors: Chun-Wei HSU, Jiun-Lei Jerry YU, Fu-Wei YAO, Chen-Ju YU, Fu-Chih YANG, Chun Lin TSAI
  • Publication number: 20160308036
    Abstract: A high voltage metal-oxide-semiconductor laterally diffused device (HV LDMOS), and more particularly an insulated gate bipolar junction transistor (IGBT), is disclosed. The device includes a semiconductor substrate, a gate structure formed on the substrate, a source and a drain formed in the substrate on either side of the gate structure, a first doped well formed in the substrate, and a second doped well formed in the first well. The gate, source, second doped well, a portion of the first well, and a portion of the drain structure are surrounded by a deep trench isolation feature and an implanted oxygen layer in the silicon substrate.
    Type: Application
    Filed: June 24, 2016
    Publication date: October 20, 2016
    Inventors: Ker-Hsiao Huo, Fu-Chih Yang, Jen-Hao Yeh, Chun Lin Tsai, Chih-Chang Cheng, Ru-Yi Su
  • Publication number: 20160293694
    Abstract: High voltage semiconductor devices are described herein. An exemplary semiconductor device includes a first doped region and a second doped region disposed in a substrate. The first doped region and the second doped region are oppositely doped and adjacently disposed in the substrate. A first isolation structure and a second isolation structure are disposed over the substrate, such that each are disposed at least partially over the first doped region. The first isolation structure is spaced apart from the second isolation structure. A resistor is disposed over a portion of the first isolation structure and electrically coupled to the first doped region. A field plate disposed over a portion of the second doped region and electrically coupled to the second doped region.
    Type: Application
    Filed: June 17, 2016
    Publication date: October 6, 2016
    Inventors: Ru-Yi SU, Fu-Chih YANG, Chun Lin TSAI, Chih-Chang CHENG, Ruey-Hsin LIU
  • Publication number: 20160293696
    Abstract: Provided is a high voltage semiconductor device that includes a PIN diode structure formed in a substrate. The PIN diode includes an intrinsic region located between a first doped well and a second doped well. The first and second doped wells have opposite doping polarities and greater doping concentration levels than the intrinsic region. The semiconductor device includes an insulating structure formed over a portion of the first doped well. The semiconductor device includes an elongate resistor device formed over the insulating structure. The resistor device has first and second portions disposed at opposite ends of the resistor device, respectively. The semiconductor device includes an interconnect structure formed over the resistor device. The interconnect structure includes: a first contact that is electrically coupled to the first doped well and a second contact that is electrically coupled to a third portion of the resistor located between the first and second portions.
    Type: Application
    Filed: June 15, 2016
    Publication date: October 6, 2016
    Inventors: Ru-Yi Su, Fu-Chih Yang, Chun Lin Tsai, Chih-Chang Cheng, Ruey-Hsin Liu
  • Publication number: 20160260704
    Abstract: A high voltage semiconductor device includes: a source having a first conductivity type and a drain having the first conductivity type disposed in a substrate; a first dielectric component disposed on a surface of the substrate between the source and the drain; a drift region disposed in the substrate, wherein the drift region has the first conductivity type; a first doped region having a second conductivity type and disposed within the drift region under the dielectric component, the second conductivity type being opposite the first conductivity type; a second doped region having the second conductivity type and disposed within the drift region, wherein the second doped region at least partially surrounds one of the source and the drain; a resistor disposed directly on the dielectric component; and a gate disposed directly on the dielectric component, wherein the gate is electrically coupled to the resistor.
    Type: Application
    Filed: March 4, 2015
    Publication date: September 8, 2016
    Inventors: Ker-Hsiao Huo, Hsin-Chih Chiang, Kevin Chen, Chun Lin Tsai, Yi-Min Chen
  • Patent number: 9391195
    Abstract: The present disclosure provides a semiconductor device. The semiconductor device includes: a drift region having a first doping polarity formed in a substrate; a doped extension region formed in the drift region and having a second doping polarity opposite the first doping polarity, the doped extension region including a laterally-extending component; a dielectric structure formed over the drift region, the dielectric structure being separated from the doped extension region by a portion of the drift region; a gate structure formed over a portion of the dielectric structure and a portion of the doped extension region; and a doped isolation region having the second doping polarity, the doped isolation region at least partially surrounding the drift region and the doped extension region.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: July 12, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ru-Yi Su, Fu-Chih Yang, Chun Lin Tsai, Ker Hsiao Huo, Chih-Chang Cheng, Ruey-Hsin Liu
  • Patent number: 9385178
    Abstract: Provided is a high voltage semiconductor device that includes a PIN diode structure formed in a substrate. The PIN diode includes an intrinsic region located between a first doped well and a second doped well. The first and second doped wells have opposite doping polarities and greater doping concentration levels than the intrinsic region. The semiconductor device includes an insulating structure formed over a portion of the first doped well. The semiconductor device includes an elongate resistor device formed over the insulating structure. The resistor device has first and second portions disposed at opposite ends of the resistor device, respectively. The semiconductor device includes an interconnect structure formed over the resistor device. The interconnect structure includes: a first contact that is electrically coupled to the first doped well and a second contact that is electrically coupled to a third portion of the resistor located between the first and second portions.
    Type: Grant
    Filed: February 13, 2014
    Date of Patent: July 5, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ru-Yi Su, Fu-Chih Yang, Chun Lin Tsai, Chih-Chang Cheng, Ruey-Hsin Liu
  • Patent number: 9379188
    Abstract: A method of making a high voltage metal-oxide-semiconductor laterally diffused device (HV LDMOS), particularly an insulated gate bipolar junction transistor (IGBT), is disclosed. The device includes a semiconductor substrate, a gate structure formed on the substrate, a source and a drain formed in the substrate on either side of the gate structure, a first doped well formed in the substrate, and a second doped well formed in the first well. The gate, source, second doped well, a portion of the first well, and a portion of the drain structure are surrounded by a deep trench isolation feature and an implanted oxygen layer in the silicon substrate.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: June 28, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ker-Hsiao Huo, Chih-Chang Cheng, Fu-Chih Yang, Jen-Hao Yeh, Chun Lin Tsai, Ru-Yi Su
  • Patent number: 9379191
    Abstract: A high electron mobility transistor (HEMT) includes a first III-V compound layer. A second III-V compound layer is disposed on the first III-V compound layer and is different from the first III-V compound layer in composition. A carrier channel is located between the first III-V compound layer and the second III-V compound layer. A source feature and a drain feature are disposed on the second III-V compound layer. A p-type layer is disposed on a portion of the second III-V compound layer between the source feature and the drain feature. A gate electrode is disposed on the p-type layer. The gate electrode includes a refractory metal. A depletion region is disposed in the carrier channel and under the gate electrode.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: June 28, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Wei Hsu, Jiun-Lei Jerry Yu, Fu-Wei Yao, Chen-Ju Yu, Fu-Chih Yang, Chun Lin Tsai
  • Patent number: 9373619
    Abstract: Provided is a high voltage semiconductor device. The high voltage semiconductor device includes a substrate that includes a doped well disposed therein. The doped well and the substrate have opposite doping polarities. The high voltage semiconductor device includes an insulating device disposed over the doped well. The high voltage semiconductor device includes an elongate resistor disposed over the insulating device. A non-distal portion of the resistor is coupled to the doped well. The high voltage semiconductor device includes a high-voltage junction termination (HVJT) device disposed adjacent to the resistor.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: June 21, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ru-Yi Su, Fu-Chih Yang, Chun Lin Tsai, Chih-Chang Cheng, Ruey-Hsin Liu
  • Publication number: 20160172475
    Abstract: A semiconductor structure comprises a first layer. The first layer comprises a first III-V semiconductor material. The semiconductor structure also comprises a second layer over the first layer. The second layer comprises a second III-V semiconductor material different from the first III-V semiconductor material. The semiconductor structure further comprises an insulating layer over the second layer. The insulating layer is patterned to expose a portion of the first layer. The exposed portion of the first layer comprises electrons of the second layer. The semiconductor structure additionally comprises an intermetallic compound over the exposed portion of the first layer.
    Type: Application
    Filed: February 12, 2016
    Publication date: June 16, 2016
    Inventors: Po-Chih Chen, Chun-Wei Hsu, Fu-Chih Yang, Fu-Wei Yao, Chun Lin Tsai, Jiun-Lei Jerry Yu
  • Publication number: 20160155841
    Abstract: An embodiment of a structure provides an enhanced performing high voltage device, configured as a lateral diffused MOS (HV LDMOS) formed in a tri-well structure (a small n-well in an extended p-type well inside an n-type well) within the substrate with an anti-punch through layer and a buried layer below the n-type well, which reduces substrate leakage current to almost zero. The drain region is separated into two regions, one within the small n-well and one contacting the outer n-type well such that the substrate is available for electric potential lines during when a high drain voltage is applied.
    Type: Application
    Filed: February 8, 2016
    Publication date: June 2, 2016
    Inventors: Ker Hsiao Huo, Chih-Chang Cheng, Ru-Yi Su, Jen-Hao Yeh, Fu-Chih Yang, Chun Lin Tsai
  • Publication number: 20160141418
    Abstract: A device includes a buried well region and a first HVW region of the first conductivity, and an insulation region over the first HVW region. A drain region of the first conductivity type is disposed on a first side of the insulation region and in a top surface region of the first HVW region. A first well region and a second well region of a second conductivity type opposite the first conductivity type are on the second side of the insulation region. A second HVW region of the first conductivity type is disposed between the first and the second well regions, wherein the second HVW region is connected to the buried well region. A source region of the first conductivity type is in a top surface region of the second HVW region, wherein the source region, the drain region, and the buried well region form a JFET.
    Type: Application
    Filed: January 22, 2016
    Publication date: May 19, 2016
    Inventors: Jen-Hao Yeh, Chih-Chang Cheng, Ru-Yi Su, Ker Hsiao Huo, Po-Chih Chen, Fu-Chih Yang, Chun-Lin Tsai
  • Patent number: 9343542
    Abstract: A method for making an enhancement-mode transistor is described. The method includes forming a first III-V compound layer on a substrate and forming a second III-V compound layer on the first III-V compound layer. The second III-V compound layer is different from the first III-V compound layer. A gate stack is formed thereon. The forming of the gate stack further includes forming a diode having a pair of a n-type doped III-V compound layer and a p-type doped III-V compound layer. Source and drain features are formed on the second III-V compound layer and interposed by the gate stack.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: May 17, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Alexander Kalnitsky, Chih-Wen Hsiung, Chun Lin Tsai
  • Patent number: 9331195
    Abstract: The present disclosure provides a method for fabricating a high-voltage semiconductor device. The method includes designating first, second, and third regions in a substrate. The first and second regions are regions where a source and a drain of the semiconductor device will be formed, respectively. The third region separates the first and second regions. The method further includes forming a slotted implant mask layer at least partially over the third region. The method also includes implanting dopants into the first, second, and third regions. The slotted implant mask layer protects portions of the third region therebelow during the implanting. The method further includes annealing the substrate in a manner to cause diffusion of the dopants in the third region.
    Type: Grant
    Filed: January 13, 2014
    Date of Patent: May 3, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ru-Yi Su, Fu-Chih Yang, Chun Lin Tsai, Chih-Chang Cheng, Ruey-Hsin Liu
  • Publication number: 20160111498
    Abstract: A method of making a high voltage metal-oxide-semiconductor laterally diffused device (HV LDMOS), particularly an insulated gate bipolar junction transistor (IGBT), is disclosed. The device includes a semiconductor substrate, a gate structure formed on the substrate, a source and a drain formed in the substrate on either side of the gate structure, a first doped well formed in the substrate, and a second doped well formed in the first well. The gate, source, second doped well, a portion of the first well, and a portion of the drain structure are surrounded by a deep trench isolation feature and an implanted oxygen layer in the silicon substrate.
    Type: Application
    Filed: December 14, 2015
    Publication date: April 21, 2016
    Inventors: Ker-Hsiao Huo, Chih-Chang Cheng, Fu-Chih Yang, Jen-Hao Yeh, Chun Lin Tsai