Patents by Inventor Chun Ren

Chun Ren has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220306452
    Abstract: Various embodiments of the present disclosure are directed towards a microelectromechanical system (MEMS) device. The MEMS device includes a first dielectric structure disposed over a first semiconductor substrate, where the first dielectric structure at least partially defines a cavity. A second semiconductor substrate is disposed over the first dielectric structure and includes a movable mass, where opposite sidewalls of the movable mass are disposed between opposite sidewall of the cavity.
    Type: Application
    Filed: June 15, 2022
    Publication date: September 29, 2022
    Inventors: Fan Hu, Chun-Ren Cheng, Hsiang-Fu Chen, Wen-Chuan Tai
  • Publication number: 20220308725
    Abstract: The present disclosure provides a touch panel assembly and an electronic device. The touch panel assembly includes a touch panel, a touch switch, and a transmission assembly. The touch panel receives a touch operation from a user. The touch switch is positioned below the touch panel and located at a center position of the touch panel. The transmission assembly drives the touch panel to ascend and descend along a vertical direction synchronously and across an entire touch surface, and the touch panel activates the touch switch while descending. When subject to a given force, any touch areas of the touch panel can be pressed down, the touch panel stably moves synchronously and across its entire touch surface, so as to increase product stability. The touch panel assembly can achieve technical effects of a uniform touch feedback and the touch panel's stable movement, and so as to effectively improve user experiences.
    Type: Application
    Filed: December 13, 2021
    Publication date: September 29, 2022
    Inventor: Chun REN
  • Patent number: 11365115
    Abstract: Various embodiments of the present disclosure are directed towards a microelectromechanical system (MEMS) device. The MEMS device includes a first dielectric structure disposed over a first semiconductor substrate, where the first dielectric structure at least partially defines a cavity. A second semiconductor substrate is disposed over the first dielectric structure and includes a movable mass, where opposite sidewalls of the movable mass are disposed between opposite sidewall of the cavity. A first piezoelectric anti-stiction structure is disposed between the movable mass and the first dielectric structure, wherein the first piezoelectric anti-stiction structure includes a first piezoelectric structure and a first electrode disposed between the first piezoelectric structure and the first dielectric structure.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: June 21, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Fan Hu, Chun-Ren Cheng, Hsiang-Fu Chen, Wen-Chuan Tai
  • Publication number: 20220185656
    Abstract: A method of manufacturing a semiconductor structure includes following operations. A first substrate is provided. A plate is formed over the first substrate. The plate includes a first tensile member, a second tensile member, a semiconductive member between the first tensile member and the second tensile member, and a plurality of apertures penetrating the first tensile member, the semiconductive member and the second tensile member. A membrane is formed over and separated from the plate. The membrane include a plurality of holes. A plurality of conductive plugs passing through the plate or membrane are formed. A plurality of semiconductive pads are formed over the plurality of conductive plugs. The plate is bonded to a second substrate. The second substrate includes a plurality of bond pads, and the semiconductive pads are in contact with the bond pads.
    Type: Application
    Filed: March 4, 2022
    Publication date: June 16, 2022
    Inventors: YI-HSIEN CHANG, CHUN-REN CHENG, WEI-CHENG SHEN, WEN-CHIEN CHEN
  • Patent number: 11353421
    Abstract: The present disclosure provides a biological field effect transistor (BioFET) and a method of fabricating a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET device includes a plurality of micro wells having a sensing gate bottom and a number of stacked well portions. A bottom surface area of a well portion is different from a top surface area of a well portion directly below. The micro wells are formed by multiple etching operations through different materials, including a sacrificial plug, to expose the sensing gate without plasma induced damage.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: June 7, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Hsien Chang, Chun-Ren Cheng, Shih-Wei Lin, Yi-Shao Liu
  • Patent number: 11340717
    Abstract: The present disclosure provides a processing apparatus and a processing system, that the processing apparatus includes: a first main body having a first plane and a second plane adjacent to the first plane; a display device disposed on the first plane; and a first interface that is matched with a second interface of an acquisition apparatus, and is configured to obtain multimedia data collected by the acquisition apparatus from the second interface after the acquisition apparatus is detachably fixed to the second plane. The processing apparatus supports the accessory-type acquisition apparatus, which satisfies diversified use requirements.
    Type: Grant
    Filed: September 28, 2019
    Date of Patent: May 24, 2022
    Assignee: LENOVO (BEIJING) CO., LTD.
    Inventors: Jie Liu, Chun Ren, Zhou Yu
  • Patent number: 11320395
    Abstract: An integrated circuit device includes a device layer, an interconnect structure, a conductive layer, a passivation layer and a bioFET. The device layer has a first side and a second side and include source/drain regions and a channel region between the source/drain regions. The interconnect structure is disposed at the first side of the device layer. The conductive layer is disposed at the second side of the device layer. The passivation layer is continuously disposed on the conductive layer and the channel region and exposes a portion of the conductive layer. The bioFET includes the source/drain regions, the channel region and a portion of the passivation layer on the channel region.
    Type: Grant
    Filed: June 14, 2020
    Date of Patent: May 3, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ching-Hui Lin, Chun-Ren Cheng, Jui-Cheng Huang, Shih-Fen Huang, Tung-Tsun Chen, Yu-Jie Huang, Fu-Chun Huang
  • Patent number: 11289568
    Abstract: The present disclosure relates to a MIM (metal-insulator-metal) capacitor having a top electrode overlying a substrate. A passivation layer overlies the top electrode. The passivation layer has a step region that continuously contacts and extends from a top surface of the top electrode to sidewalls of the top electrode. A metal frame overlies the passivation layer. The metal frame continuously contacts and extends from a top surface of the passivation layer to upper sidewalls of the passivation layer in the step region. The metal frame has a protrusion that extends through the passivation layer and contacts the top surface of the top electrode.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: March 29, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chi-Yuan Shih, Kai-Fung Chang, Shih-Fen Huang, Wen-Chuan Tai, Yi-Chuan Teng, Yi Heng Tsai, You-Ru Lin, Yen-Wen Chen, Anderson Lin, Fu-Chun Huang, Chun-Ren Cheng, Ivan Hua-Shu Wu, Fan Hu, Ching-Hui Lin, Yan-Jie Liao
  • Patent number: 11280786
    Abstract: The present disclosure provides biochips and methods of fabricating biochips. The method includes combining three portions: a transparent substrate, a first substrate with microfluidic channels therein, and a second substrate. Through-holes for inlet and outlet are formed in the transparent substrate or the second substrate. Various non-organic landings with support medium for bio-materials to attach are formed on the first substrate and the second substrate before they are combined. In other embodiments, the microfluidic channel is formed of an adhesion layer between a transparent substrate and a second substrate with landings on the substrates.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: March 22, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Hua Chu, Allen Timothy Chang, Ching-Ray Chen, Yi-Hsien Chang, Yi-Shao Liu, Chun-Ren Cheng, Chun-Wen Cheng
  • Patent number: 11267693
    Abstract: A method of manufacturing a semiconductor structure includes providing a first substrate, disposing and patterning a plate over the first substrate, disposing a first sacrificial oxide layer over the plate, forming a plurality of recesses over a surface of the first sacrificial oxide layer, disposing and patterning a membrane over the first sacrificial oxide layer, disposing a second sacrificial oxide layer to surround the membrane and cover the first sacrificial oxide layer; and forming a plurality of conductive plugs passing through the plate or the membrane, wherein the plate includes a semiconductive member and a tensile member, and the semiconductive member is disposed within the tensile member.
    Type: Grant
    Filed: July 30, 2020
    Date of Patent: March 8, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Yi-Hsien Chang, Chun-Ren Cheng, Wei-Cheng Shen, Wen-Chien Chen
  • Patent number: 11220422
    Abstract: A micro-electro-mechanical system (MEMS) device includes a substrate, a proof mass, and a piezoelectric bump. The substrate has a surface. The proof mass is suspended over the surface of the substrate, wherein the proof mass is movable with respect to the substrate. The piezoelectric bump is disposed on the surface of the substrate and extends a distance from the surface of the substrate toward the proof mass.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: January 11, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Fan Hu, Wen-Chuan Tai, Hsiang-Fu Chen, Chun-Ren Cheng
  • Publication number: 20210405712
    Abstract: A hinge mechanism includes a hinge assembly connected with a first body and a second body to rotatably connect the first body and the second body, and a torque assembly mounted at the first body and connected with the hinge assembly. When the first body and the second body are relatively rotated to drive the hinge assembly, the hinge assembly drives the torque assembly to cause at least a part of the torque assembly to translate relative to the first body to provide a torque for the hinge assembly.
    Type: Application
    Filed: March 19, 2021
    Publication date: December 30, 2021
    Inventor: Chun REN
  • Publication number: 20210389273
    Abstract: An integrated circuit device includes a device layer, an interconnect structure, a conductive layer, a passivation layer and a bioFET. The device layer has a first side and a second side and include source/drain regions and a channel region between the source/drain regions. The interconnect structure is disposed at the first side of the device layer. The conductive layer is disposed at the second side of the device layer. The passivation layer is continuously disposed on the conductive layer and the channel region and exposes a portion of the conductive layer. The bioFET includes the source/drain regions, the channel region and a portion of the passivation layer on the channel region.
    Type: Application
    Filed: June 14, 2020
    Publication date: December 16, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ching-Hui Lin, Chun-Ren Cheng, Jui-Cheng Huang, Shih-Fen Huang, Tung-Tsun Chen, Yu-Jie Huang, Fu-Chun Huang
  • Publication number: 20210383972
    Abstract: Various embodiments of the present disclosure are directed towards an integrated chip including a dielectric structure sandwiched between a first electrode and a bottom electrode. A passivation layer overlies the second electrode and the dielectric structure. The passivation layer comprises a horizontal surface vertically below a top surface of the passivation layer. The horizontal surface is disposed above a top surface of the dielectric structure.
    Type: Application
    Filed: August 25, 2021
    Publication date: December 9, 2021
    Inventors: Anderson Lin, Chun-Ren Cheng, Chi-Yuan Shih, Shih-Fen Huang, Yi-Chuan Teng, Yi Heng Tsai, You-Ru Lin, Yen-Wen Chen, Fu-Chun Huang, Fan Hu, Ching-Hui Lin, Yan-Jie Liao
  • Patent number: 11186734
    Abstract: An epoxy resin emulsion includes a continuous phase including an aqueous carrier and an acid. The emulsion also includes a dispersed phase including an epoxy resin. The epoxy resin is the reaction product of an amine compound and a first epoxy reactant. The first epoxy reactant itself includes the reaction product of (1) an aromatic diol monomer, (2) a di-glycidyl ether of Bisphenol A and/or a di-glycidyl ether of catechol, and (3) a C8-C18 alkyl phenolic end-capping agent. The (1) aromatic diol monomer has the structure: In this structure, each of R1-R4 is independently a hydrogen atom, a C1-C8 alkyl group, a C3-C8 cycloalkyl group, an aryl group, an aralkyl group, a halide group, a cyano group, a nitro group, a blocked isocyanate group, or a C1-C8 alkyloxy group or wherein any two or more of R1-R4 may be a fused ring.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: November 30, 2021
    Assignee: AXALTA COATING SYSTEMS IP CO., LLC
    Inventors: Xin Jin, Chun Ren
  • Publication number: 20210302367
    Abstract: A biochip including a fluidic substrate having an opening extending completely through the fluidic substrate. The biochip further includes a silicon oxide coating on the fluidic substrate. The biochip further includes a plurality of sidewalls on the fluidic substrate, wherein the plurality of sidewalls defines a channel in fluid communication with the opening, the silicon oxide coating is between adjacent sidewalls of the plurality of sidewalls, and each of the plurality of sidewalls comprises polydimethylsiloxane (PDMS). The biochip further includes a detection substrate spaced from the fluidic substrate.
    Type: Application
    Filed: April 2, 2021
    Publication date: September 30, 2021
    Inventors: Yi-Shao LIU, Chun-Ren CHENG, Chun-wen CHENG
  • Patent number: 11104129
    Abstract: MEMS devices and methods of fabrication thereof are described. In one embodiment, the MEMS device includes a bottom alloy layer disposed over a substrate. An inner material layer is disposed on the bottom alloy layer, and a top alloy layer is disposed on the inner material layer, the top and bottom alloy layers including an alloy of at least two metals, wherein the inner material layer includes the alloy and nitrogen. The top alloy layer, the inner material layer, and the bottom alloy layer form a MEMS feature.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: August 31, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jung-Huei Peng, Chun-Ren Cheng, Jiou-Kang Lee, Shang-Ying Tsai, Ting-Hau Wu
  • Patent number: 11107630
    Abstract: Various embodiments of the present disclosure are directed towards a piezoelectric metal-insulator-metal (MIM) device including a piezoelectric structure between a top electrode and a bottom electrode. The piezoelectric layer includes a top region overlying a bottom region. Outer sidewalls of the bottom region extend past outer sidewalls of the top region. The outer sidewalls of the top region are aligned with outer sidewalls of the top electrode. The piezoelectric layer is configured to help limit delamination of the top electrode from the piezoelectric layer.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: August 31, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Anderson Lin, Chun-Ren Cheng, Chi-Yuan Shih, Shih-Fen Huang, Yi-Chuan Teng, Yi Heng Tsai, You-Ru Lin, Yen-Wen Chen, Fu-Chun Huang, Fan Hu, Ching-Hui Lin, Yan-Jie Liao
  • Patent number: 11099152
    Abstract: The present disclosure provides a bio-field effect transistor (BioFET) device and methods of fabricating a BioFET and a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET device includes a gate structure disposed on a first surface of a substrate and an interface layer formed on a second surface of the substrate. The substrate is thinned from the second surface to expose a channel region before forming the interface layer.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: August 24, 2021
    Inventors: Yi-Shao Liu, Chun-Ren Cheng, Ching-Ray Chen, Yi-Hsien Chang, Fei-Lung Lai, Chun-Wen Cheng
  • Patent number: 11097941
    Abstract: A method includes forming a recess in a first substrate, bonding a micro-electro-mechanical systems (MEMS) substrate to the first substrate after forming the recess in the first substrate, forming an anti-stiction layer over the micro-electro-mechanical systems (MEMS) substrate, pattering the anti-stiction layer, etching the MEMS substrate to form a MEMS device, and bonding the MEMS device and the first substrate to a second substrate. The patterned anti-stiction layer is between the MEMS device and the second substrate.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: August 24, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Hsien Chang, Tzu-Heng Wu, Chun-Ren Cheng, Shih-Wei Lin, Jung-Kuo Tu