Patents by Inventor Chun-Yuan Wu

Chun-Yuan Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11476367
    Abstract: A semiconductor device includes an oxide semiconductor layer, disposed over a substrate. A source electrode of a metal nitride is disposed on the oxide semiconductor layer. A drain electrode of the metal nitride is disposed on the oxide semiconductor layer. A metal-nitride oxidation layer is formed on a surface of the source electrode and the drain electrode. A ratio of a thickness of the metal-nitride oxidation layer to a thickness of the drain electrode or the source electrode is equal to or less than 0.2.
    Type: Grant
    Filed: August 23, 2021
    Date of Patent: October 18, 2022
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Yen-Chen Chen, Xiao Wu, Hai Tao Liu, Ming Hua Du, Shouguo Zhang, Yao-Hung Liu, Chin-Fu Lin, Chun-Yuan Wu
  • Publication number: 20210384359
    Abstract: A semiconductor device includes an oxide semiconductor layer, disposed over a substrate. A source electrode of a metal nitride is disposed on the oxide semiconductor layer. A drain electrode of the metal nitride is disposed on the oxide semiconductor layer. A metal-nitride oxidation layer is formed on a surface of the source electrode and the drain electrode. A ratio of a thickness of the metal-nitride oxidation layer to a thickness of the drain electrode or the source electrode is equal to or less than 0.2.
    Type: Application
    Filed: August 23, 2021
    Publication date: December 9, 2021
    Applicant: United Microelectronics Corp.
    Inventors: Yen-Chen Chen, Xiao Wu, Hai Tao Liu, Ming Hua Du, Shouguo Zhang, Yao-Hung Liu, Chin-Fu Lin, Chun-Yuan Wu
  • Patent number: 11133418
    Abstract: A semiconductor device includes an oxide semiconductor layer, disposed over a substrate. A source electrode of a metal nitride is disposed on the oxide semiconductor layer. A drain electrode of the metal nitride is disposed on the oxide semiconductor layer. A metal-nitride oxidation layer is formed on a surface of the source electrode and the drain electrode. A ratio of a thickness of the metal-nitride oxidation layer to a thickness of the drain electrode or the source electrode is equal to or less than 0.2.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: September 28, 2021
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Yen-Chen Chen, Xiao Wu, Hai Tao Liu, Ming Hua Du, Shouguo Zhang, Yao-Hung Liu, Chin-Fu Lin, Chun-Yuan Wu
  • Patent number: 10763260
    Abstract: A semiconductor device includes a memory region, a plurality of bit lines in the memory region, a first low-k dielectric layer on each sidewall of each bit line, a plurality of storage node regions between the bit lines, and a second low-k dielectric layer surrounding each storage node region.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: September 1, 2020
    Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Chien-Ting Ho, Shih-Fang Tzou, Chun-Yuan Wu, Li-Wei Feng, Yu-Chieh Lin, Ying-Chiao Wang, Tsung-Ying Tsai
  • Patent number: 10573649
    Abstract: A semiconductor device includes a substrate, a first well formed in the substrate, a second well formed in the substrate, a first fin formed on the first well, and a second fin formed on the second well. The first well includes a first conductivity type, the second well includes a second conductivity type, and the first conductivity type and the second conductivity type are complementary to each other. The substrate includes a first semiconductor material. The first fin and the second fin include the first semiconductor material and a second semiconductor material. A lattice constant of the second semiconductor material is larger than a lattice constant of the first semiconductor material. The first semiconductor material in the first fin includes a first concentration, the first semiconductor material in the second fin includes a second concentration, and the second concentration is larger than the first concentration.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: February 25, 2020
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chien-Hung Chen, Shih-Hsien Huang, Yu-Ru Yang, Chia-Hsun Tseng, Cheng-Tzung Tsai, Chun-Yuan Wu
  • Patent number: 10497797
    Abstract: A semiconductor structure including a semiconductor substrate and at least a fin structure formed thereon. The semiconductor substrate includes a first semiconductor material. The fin structure includes a first epitaxial layer and a second epitaxial layer formed between the first epitaxial layer and the semiconductor substrate. The first epitaxial layer includes the first semiconductor material and a second semiconductor material. A lattice constant of the second semiconductor material is different from a lattice constant of the first semiconductor material. The second epitaxial layer includes the first semiconductor material and the second semiconductor material. The second epitaxial layer further includes conductive dopants.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: December 3, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Shih-Hsien Huang, Chien-Hung Chen, Chun-Yuan Wu, Kun-Hsin Chen, Tien-I Wu, Yu-Ru Yang, Huai-Tzu Chiang
  • Patent number: 10446447
    Abstract: A method for fabricating semiconductor device includes the steps of: forming a fin-shaped structure on a substrate; forming a shallow trench isolation (STI) around the fin-shaped structure; forming a liner on the fin-shaped structure; and removing the liner and part of the fin-shaped structure so that a sidewall of the fin-shaped structure comprises a curve. Moreover, the method includes forming an epitaxial layer around the sidewall of the fin-shaped structure while a top surface of the fin-shaped structure is exposed.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: October 15, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Yi-Fan Li, I-Cheng Hu, Chun-Jen Chen, Tien-I Wu, Yu-Shu Lin, Chun-Yuan Wu
  • Patent number: 10439023
    Abstract: Provided is a FinFET including a substrate, at least one fin and at least one gate. A portion of the at least one fin is embedded in the substrate. The at least one fin includes, from bottom to top, a seed layer, a stress relaxation layer and a channel layer. The at least one gate is across the at least one fin. A method of forming a FinFET is further provided.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: October 8, 2019
    Assignee: United Microelectronics Corp.
    Inventors: Huai-Tzu Chiang, Sheng-Hao Lin, Hao-Ming Lee, Yu-Ru Yang, Shih-Hsien Huang, Chien-Hung Chen, Chun-Yuan Wu, Cheng-Tzung Tsai
  • Publication number: 20190267492
    Abstract: A semiconductor device includes an oxide semiconductor layer, disposed over a substrate. A source electrode of a metal nitride is disposed on the oxide semiconductor layer. A drain electrode of the metal nitride is disposed on the oxide semiconductor layer. A metal-nitride oxidation layer is formed on a surface of the source electrode and the drain electrode. A ratio of a thickness of the metal-nitride oxidation layer to a thickness of the drain electrode or the source electrode is equal to or less than 0.2.
    Type: Application
    Filed: May 15, 2019
    Publication date: August 29, 2019
    Applicant: United Microelectronics Corp.
    Inventors: Yen-Chen Chen, Xiao Wu, Hai Tao Liu, Ming Hua Du, Shouguo Zhang, Yao-Hung Liu, Chin-Fu Lin, Chun-Yuan Wu
  • Patent number: 10381380
    Abstract: The present invention provides a method of forming a semiconductor device. First, a substrate having a first insulating layer formed thereon is provided. After forming an oxide semiconductor layer on the first insulating layer, two source/drain regions are formed on the oxide semiconductor layer. A bottom oxide layer is formed to entirely cover the source/drain regions, following by forming a high-k dielectric layer on the bottom oxide layer. Next, a thermal process is performed on the high-k dielectric layer, and a plasma treatment is performed on the high-k dielectric layer in the presence of a gas containing an oxygen element.
    Type: Grant
    Filed: April 8, 2018
    Date of Patent: August 13, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chia-Fu Hsu, Chun-Yuan Wu
  • Patent number: 10381228
    Abstract: An epitaxial process applying light illumination includes the following steps. A substrate is provided. A dry etching process and a wet etching process are performed to form a recess in the substrate, wherein an infrared light illuminates while the wet etching process is performed. An epitaxial structure is formed in the recess.
    Type: Grant
    Filed: February 25, 2015
    Date of Patent: August 13, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Yu-Ying Lin, Ted Ming-Lang Guo, Chin-Cheng Chien, Chih-Chien Liu, Hsin-Kuo Hsu, Chin-Fu Lin, Chun-Yuan Wu
  • Publication number: 20190229053
    Abstract: A manufacturing method of a metal-insulator-metal (MIM) capacitor structure includes the following steps. A bottom plate is formed. A first conductive layer is patterned to be the bottom plate, and the first conductive layer includes a metal element. An interface layer is formed on the first conductive layer by performing a nitrous oxide (N2O) treatment on a top surface of the first conductive layer. The interface layer includes oxygen and the metal element of the first conductive layer. A dielectric layer is formed on the interface layer. A top plate is formed on the dielectric layer. The metal-insulator-metal capacitor structure includes the bottom plate, the interface layer disposed on the bottom plate, the dielectric layer disposed on the interface layer, and the top plate disposed on the dielectric layer.
    Type: Application
    Filed: January 22, 2018
    Publication date: July 25, 2019
    Inventors: Ya-Jyuan Hung, Ai-Sen Liu, Bin-Siang Tsai, Chin-Fu Lin, Chun-Yuan Wu
  • Patent number: 10347716
    Abstract: A method for fabricating semiconductor device includes the steps of: providing a substrate having a first region and a second region; forming a plurality of fin-shaped structures and a first shallow trench isolation (STI) around the fin-shaped structures on the first region and the second region; forming a patterned hard mask on the second region; removing the fin-shaped structures and the first STI from the first region; forming a second STI on the first region; removing the patterned hard mask; and forming a gate structure on the second STI.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: July 9, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: En-Chiuan Liou, Chih-Wei Yang, Yu-Cheng Tung, Chun-Yuan Wu
  • Patent number: 10340391
    Abstract: A semiconductor device includes an oxide semiconductor layer, disposed over a substrate. A source electrode of a metal nitride is disposed on the oxide semiconductor layer. A drain electrode of the metal nitride is disposed on the oxide semiconductor layer. A metal-nitride oxidation layer is formed on a surface of the source electrode and the drain electrode. A ratio of a thickness of the metal-nitride oxidation layer to a thickness of the drain electrode or the source electrode is equal to or less than 0.2.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: July 2, 2019
    Assignee: United Microelectronics Corp.
    Inventors: Yen-Chen Chen, Xiao Wu, Hai Tao Liu, Ming Hua Du, Shouguo Zhang, Yao-Hung Liu, Chin-Fu Lin, Chun-Yuan Wu
  • Publication number: 20190115352
    Abstract: A semiconductor device includes a memory region, a plurality of bit lines in the memory region, a first low-k dielectric layer on each sidewall of each bit line, a plurality of storage node regions between the bit lines, and a second low-k dielectric layer surrounding each storage node region.
    Type: Application
    Filed: December 11, 2018
    Publication date: April 18, 2019
    Inventors: Chien-Ting Ho, Shih-Fang Tzou, Chun-Yuan Wu, Li-Wei Feng, Yu-Chieh Lin, Ying-Chiao Wang, Tsung-Ying Tsai
  • Patent number: 10236294
    Abstract: The present invention proposes a method of manufacturing a semiconductor device, which includes the steps of providing a substrate with a memory region and a logic region, forming bit lines and logic gates respectively in the memory region and the logic region, wherein storage node regions are defined between bit lines, forming a first low-K dielectric layer on sidewalls of bit lines, forming a doped silicon layer in the storage node regions between bit lines, wherein the top surface of doped silicon layer is lower than the top surface of bit line, forming a second low-K dielectric layer on sidewalls of storage node regions, and filling up storage node regions with metal plugs.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: March 19, 2019
    Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Chien-Ting Ho, Shih-Fang Tzou, Chun-Yuan Wu, Li-Wei Feng, Yu-Chieh Lin, Ying-Chiao Wang, Tsung-Ying Tsai
  • Patent number: 10177231
    Abstract: A semiconductor device comprises a semiconductor substrate and a semiconductor fin. The semiconductor substrate has an upper surface and a recess extending downwards into the semiconductor substrate from the upper surface. The semiconductor fin is disposed in the recess and extends upwards beyond the upper surface, wherein the semiconductor fin is directly in contact with semiconductor substrate, so as to form at least one semiconductor hetero-interface on a sidewall of the recess.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: January 8, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chien-Hung Chen, Shih-Hsien Huang, Yu-Ru Yang, Huai-Tzu Chiang, Hao-Ming Lee, Sheng-Hao Lin, Cheng-Tzung Tsai, Chun-Yuan Wu
  • Publication number: 20190006519
    Abstract: A semiconductor device includes an oxide semiconductor layer, disposed over a substrate. A source electrode of a metal nitride is disposed on the oxide semiconductor layer. A drain electrode of the metal nitride is disposed on the oxide semiconductor layer. A metal-nitride oxidation layer is formed on a surface of the source electrode and the drain electrode. A ratio of a thickness of the metal-nitride oxidation layer to a thickness of the drain electrode or the source electrode is equal to or less than 0.2.
    Type: Application
    Filed: June 29, 2017
    Publication date: January 3, 2019
    Applicant: United Microelectronics Corp.
    Inventors: Yen-Chen Chen, Xiao Wu, Hai Tao Liu, Ming Hua Du, Shouguo Zhang, Yao-Hung Liu, Chin-Fu Lin, Chun-Yuan Wu
  • Patent number: 10141193
    Abstract: A semiconductor device including a substrate, a spacer and a high-k dielectric layer having a U-shape profile is provided. The spacer located on the substrate surrounds and defines a trench. The high-k dielectric layer having a U-shape profile is located in the trench, and the high-k dielectric layer having a U-shape profile exposes an upper portion of the sidewalls of the trench.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: November 27, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chin-Cheng Chien, Chun-Yuan Wu, Chih-Chien Liu, Chin-Fu Lin, Teng-Chun Tsai
  • Publication number: 20180331044
    Abstract: A semiconductor device including a tungsten contact structure formed in a first dielectric layer on a substrate is provided. The tungsten contact structure contains a seam structure. A tungsten oxide layer is formed at least on a sidewall of the seam structure.
    Type: Application
    Filed: June 15, 2017
    Publication date: November 15, 2018
    Applicant: United Microelectronics Corp.
    Inventors: Yi-Yu Wu, Chun-Yuan Wu, Chih-Chien Liu, Bin-Siang Tsai