Patents by Inventor Chun-Yuan Wu

Chun-Yuan Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10340391
    Abstract: A semiconductor device includes an oxide semiconductor layer, disposed over a substrate. A source electrode of a metal nitride is disposed on the oxide semiconductor layer. A drain electrode of the metal nitride is disposed on the oxide semiconductor layer. A metal-nitride oxidation layer is formed on a surface of the source electrode and the drain electrode. A ratio of a thickness of the metal-nitride oxidation layer to a thickness of the drain electrode or the source electrode is equal to or less than 0.2.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: July 2, 2019
    Assignee: United Microelectronics Corp.
    Inventors: Yen-Chen Chen, Xiao Wu, Hai Tao Liu, Ming Hua Du, Shouguo Zhang, Yao-Hung Liu, Chin-Fu Lin, Chun-Yuan Wu
  • Publication number: 20190115352
    Abstract: A semiconductor device includes a memory region, a plurality of bit lines in the memory region, a first low-k dielectric layer on each sidewall of each bit line, a plurality of storage node regions between the bit lines, and a second low-k dielectric layer surrounding each storage node region.
    Type: Application
    Filed: December 11, 2018
    Publication date: April 18, 2019
    Inventors: Chien-Ting Ho, Shih-Fang Tzou, Chun-Yuan Wu, Li-Wei Feng, Yu-Chieh Lin, Ying-Chiao Wang, Tsung-Ying Tsai
  • Patent number: 10236294
    Abstract: The present invention proposes a method of manufacturing a semiconductor device, which includes the steps of providing a substrate with a memory region and a logic region, forming bit lines and logic gates respectively in the memory region and the logic region, wherein storage node regions are defined between bit lines, forming a first low-K dielectric layer on sidewalls of bit lines, forming a doped silicon layer in the storage node regions between bit lines, wherein the top surface of doped silicon layer is lower than the top surface of bit line, forming a second low-K dielectric layer on sidewalls of storage node regions, and filling up storage node regions with metal plugs.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: March 19, 2019
    Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Chien-Ting Ho, Shih-Fang Tzou, Chun-Yuan Wu, Li-Wei Feng, Yu-Chieh Lin, Ying-Chiao Wang, Tsung-Ying Tsai
  • Patent number: 10177231
    Abstract: A semiconductor device comprises a semiconductor substrate and a semiconductor fin. The semiconductor substrate has an upper surface and a recess extending downwards into the semiconductor substrate from the upper surface. The semiconductor fin is disposed in the recess and extends upwards beyond the upper surface, wherein the semiconductor fin is directly in contact with semiconductor substrate, so as to form at least one semiconductor hetero-interface on a sidewall of the recess.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: January 8, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chien-Hung Chen, Shih-Hsien Huang, Yu-Ru Yang, Huai-Tzu Chiang, Hao-Ming Lee, Sheng-Hao Lin, Cheng-Tzung Tsai, Chun-Yuan Wu
  • Publication number: 20190006519
    Abstract: A semiconductor device includes an oxide semiconductor layer, disposed over a substrate. A source electrode of a metal nitride is disposed on the oxide semiconductor layer. A drain electrode of the metal nitride is disposed on the oxide semiconductor layer. A metal-nitride oxidation layer is formed on a surface of the source electrode and the drain electrode. A ratio of a thickness of the metal-nitride oxidation layer to a thickness of the drain electrode or the source electrode is equal to or less than 0.2.
    Type: Application
    Filed: June 29, 2017
    Publication date: January 3, 2019
    Applicant: United Microelectronics Corp.
    Inventors: Yen-Chen Chen, Xiao Wu, Hai Tao Liu, Ming Hua Du, Shouguo Zhang, Yao-Hung Liu, Chin-Fu Lin, Chun-Yuan Wu
  • Patent number: 10141193
    Abstract: A semiconductor device including a substrate, a spacer and a high-k dielectric layer having a U-shape profile is provided. The spacer located on the substrate surrounds and defines a trench. The high-k dielectric layer having a U-shape profile is located in the trench, and the high-k dielectric layer having a U-shape profile exposes an upper portion of the sidewalls of the trench.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: November 27, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chin-Cheng Chien, Chun-Yuan Wu, Chih-Chien Liu, Chin-Fu Lin, Teng-Chun Tsai
  • Publication number: 20180331044
    Abstract: A semiconductor device including a tungsten contact structure formed in a first dielectric layer on a substrate is provided. The tungsten contact structure contains a seam structure. A tungsten oxide layer is formed at least on a sidewall of the seam structure.
    Type: Application
    Filed: June 15, 2017
    Publication date: November 15, 2018
    Applicant: United Microelectronics Corp.
    Inventors: Yi-Yu Wu, Chun-Yuan Wu, Chih-Chien Liu, Bin-Siang Tsai
  • Publication number: 20180323302
    Abstract: A method for fabricating semiconductor device includes the steps of: forming a fin-shaped structure on a substrate; forming a shallow trench isolation (STI) around the fin-shaped structure; forming a liner on the fin-shaped structure; and removing the liner and part of the fin-shaped structure so that a sidewall of the fin-shaped structure comprises a curve. Moreover, the method includes forming an epitaxial layer around the sidewall of the fin-shaped structure while a top surface of the fin-shaped structure is exposed.
    Type: Application
    Filed: July 16, 2018
    Publication date: November 8, 2018
    Inventors: Yi-Fan Li, I-Cheng Hu, Chun-Jen Chen, Tien-I Wu, Yu-Shu Lin, Chun-Yuan Wu
  • Publication number: 20180323256
    Abstract: Provided is a FinFET including a substrate, at least one fin and at least one gate. A portion of the at least one fin is embedded in the substrate. The at least one fin includes, from bottom to top, a seed layer, a stress relaxation layer and a channel layer. The at least one gate is across the at least one fin. A method of forming a FinFET is further provided.
    Type: Application
    Filed: July 19, 2018
    Publication date: November 8, 2018
    Applicant: United Microelectronics Corp.
    Inventors: Huai-Tzu Chiang, Sheng-Hao Lin, Hao-Ming Lee, Yu-Ru Yang, Shih-Hsien Huang, Chien-Hung Chen, Chun-Yuan Wu, Cheng-Tzung Tsai
  • Patent number: 10068963
    Abstract: Provided is a FinFET including a substrate, at least one fin and at least one gate. A portion of the at least one fin is embedded in the substrate. The at least one fin includes, from bottom to top, a seed layer, a stress relaxation layer and a channel layer. The at least one gate is across the at least one fin. A method of forming a FinFET is further provided.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: September 4, 2018
    Assignee: United Microelectronics Corp.
    Inventors: Huai-Tzu Chiang, Sheng-Hao Lin, Hao-Ming Lee, Yu-Ru Yang, Shih-Hsien Huang, Chien-Hung Chen, Chun-Yuan Wu, Cheng-Tzung Tsai
  • Patent number: 10056490
    Abstract: A semiconductor device includes: a fin-shaped structure on a substrate, in which a sidewall of the fin-shaped structure comprises a curve. Specifically, the fin-shaped structure includes a top portion and a bottom portion, a shallow trench isolation (STI) around the bottom portion of the fin-shaped structure, and the curve includes a planar portion extending from the top surface of fin-shaped structure downward and a curved portion extending from the bottom surface of the fin-shaped structure upward.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: August 21, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Yi-Fan Li, I-Cheng Hu, Chun-Jen Chen, Tien-I Wu, Yu-Shu Lin, Chun-Yuan Wu
  • Publication number: 20180226435
    Abstract: The present invention provides a method of forming a semiconductor device. First, a substrate having a first insulating layer formed thereon is provided. After forming an oxide semiconductor layer on the first insulating layer, two source/drain regions are formed on the oxide semiconductor layer. A bottom oxide layer is formed to entirely cover the source/drain regions, following by forming a high-k dielectric layer on the bottom oxide layer.
    Type: Application
    Filed: April 8, 2018
    Publication date: August 9, 2018
    Inventors: Chia-Fu Hsu, Chun-Yuan Wu
  • Publication number: 20180190656
    Abstract: The present invention proposes a method of manufacturing a semiconductor device, which includes the steps of providing a substrate with a memory region and a logic region, forming bit lines and logic gates respectively in the memory region and the logic region, wherein storage node regions are defined between bit lines, forming a first low-K dielectric layer on sidewalls of bit lines, forming a doped silicon layer in the storage node regions between bit lines, wherein the top surface of doped silicon layer is lower than the top surface of bit line, forming a second low-K dielectric layer on sidewalls of storage node regions, and filling up storage node regions with metal plugs.
    Type: Application
    Filed: December 27, 2017
    Publication date: July 5, 2018
    Inventors: Chien-Ting Ho, Shih-Fang Tzou, Chun-Yuan Wu, Li-Wei Feng, Yu-Chieh Lin, Ying-Chiao Wang, Tsung-Ying Tsai
  • Patent number: 10014227
    Abstract: A semiconductor device includes a semiconductor substrate, at least a first fin structure, at least a second fin structure, a first gate, a second gate, a first source/drain region and a second source/drain region. The semiconductor substrate has at least a first active region to dispose the first fin structure and at least a second active region to dispose the second fin structure. The first/second fin structure partially overlapped by the first/second gate has a first/second stress, and the first stress and the second stress are different from each other. The first/second source/drain region is disposed in the first/second fin structure at two sides of the first/second gate.
    Type: Grant
    Filed: August 12, 2015
    Date of Patent: July 3, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Teng-Chun Tsai, Chun-Yuan Wu, Chih-Chien Liu, Chin-Cheng Chien, Chin-Fu Lin
  • Patent number: 9991337
    Abstract: A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having a first region and a second region; forming a plurality of fin-shaped structures and a first shallow trench isolation (STI) around the fin-shaped structures on the first region and the second region; forming a patterned hard mask on the second region; removing the fin-shaped structures and the first STI from the first region; forming a second STI on the first region; removing the patterned hard mask; and forming a gate structure on the second STI.
    Type: Grant
    Filed: August 30, 2015
    Date of Patent: June 5, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: En-Chiuan Liou, Chih-Wei Yang, Yu-Cheng Tung, Chun-Yuan Wu
  • Publication number: 20180138263
    Abstract: A semiconductor structure includes a capacitor. The capacitor includes a bottom electrode, a first high-k dielectric layer, a second high-k dielectric layer and a top electrode. The bottom electrode includes a first layer and a second layer disposed on the first layer. The bottom electrode is formed of TiN. The first layer has a crystallization structure. The second layer has an amorphous structure. The first high-k dielectric layer is disposed on the bottom electrode. The first high-k dielectric layer is formed of TiO2. The second high-k dielectric layer is disposed on the first high-k dielectric layer. The second high-k dielectric layer is formed of a material different from TiO2. The top electrode is disposed on the second high-k dielectric layer.
    Type: Application
    Filed: November 14, 2016
    Publication date: May 17, 2018
    Inventors: Ko-Wei Lin, Yen-Chen Chen, Chin-Fu Lin, Chun-Yuan Wu, Chun-Ling Lin
  • Patent number: 9972644
    Abstract: The present invention provides a semiconductor device and a method of forming the same, and the semiconductor device including a substrate, an oxide semiconductor layer, two source/drain regions, a high-k dielectric layer and a bottom oxide layer. The oxide semiconductor layer is disposed on a first insulating layer disposed on the substrate. The source/drain regions are disposed on the oxide semiconductor layer. The high-k dielectric layer covers the oxide semiconductor layer and the source structure and the drain regions. The bottom oxide layer is disposed between the high-k dielectric layer and the source/drain regions, wherein the bottom oxide layer covers the source/drain regions and the oxide semiconductor layer.
    Type: Grant
    Filed: October 1, 2015
    Date of Patent: May 15, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chia-Fu Hsu, Chun-Yuan Wu
  • Publication number: 20180130871
    Abstract: The present invention provides a capacitor structure, including a bottom plate and a top plate, wherein the top plate has a first sidewall, and wherein an area of the top plate is less than an area of the bottom plate. The capacitor structure further includes a dielectric layer in between the bottom plate and the top plate, the dielectric layer having a second sidewall, wherein the first sidewall is aligned with the second sidewall, and at least one sidewall spacer placed against the first sidewall of the top plate and the second sidewall of the dielectric layer, and overlaying a portion of the bottom plate.
    Type: Application
    Filed: November 8, 2016
    Publication date: May 10, 2018
    Inventors: Hung-Chan Lin, Chin-Fu Lin, Chun-Yuan Wu
  • Patent number: 9966425
    Abstract: A method for fabricating a metal-insulator-metal (MIM) capacitor includes the steps of: forming a capacitor bottom metal (CBM) layer on a material layer; forming a silicon layer on the CBM layer; forming a capacitor dielectric layer on the silicon layer; and forming a capacitor top metal (CTM) layer on the capacitor dielectric layer.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: May 8, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Jen-Po Huang, Chin-Fu Lin, Bin-Siang Tsai, Xu Yang Shen, Seng Wah Liau, Yen-Chen Chen, Ko-Wei Lin, Chun-Ling Lin, Kuo-Chih Lai, Ai-Sen Liu, Chun-Yuan Wu, Yang-Ju Lu
  • Patent number: 9923095
    Abstract: The present invention provides a non-planar FET and a method of manufacturing the same. The non-planar FET includes a substrate, a fin structure, a gate and a gate dielectric layer. The fin structure is disposed on the substrate. The fin structure includes a first portion adjacent to the substrate wherein the first portion shrinks towards a side of the substrate. The gate is disposed on the fin structure. The gate dielectric layer is disposed between the fin structure and the gate. The present invention further provides a method of manufacturing the non-planar FET.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: March 20, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chin-Cheng Chien, Chun-Yuan Wu, Chih-Chien Liu, Chin-Fu Lin, Chia-Lin Hsu