Patents by Inventor Chung-Yi Yu

Chung-Yi Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11594413
    Abstract: A semiconductor structure includes a substrate. The semiconductor structure further includes a buffer layer over the substrate, wherein the buffer layer comprises a plurality of III-V layers, and a dopant type of each III-V layer of the plurality of III-V layers is opposite to a dopant of adjacent III-V layers of the plurality of III-V layers. The semiconductor structure further includes an active layer over the buffer layer. The semiconductor structure further includes a dielectric layer over the active layer.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: February 28, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chi-Ming Chen, Po-Chun Liu, Chung-Yi Yu, Chia-Shiung Tsai
  • Patent number: 11594593
    Abstract: Various embodiments of the present application are directed towards a method for forming a metal-insulator-metal (MIM) capacitor comprising an enhanced interfacial layer to reduce breakdown failure. In some embodiments, a bottom electrode layer is deposited over a substrate. A native oxide layer is formed on a top surface of the bottom electrode layer and has a first adhesion strength with the top surface. A plasma treatment process is performed to replace the native oxide layer with an interfacial layer. The interfacial layer is conductive and has a second adhesion strength with the top surface of the bottom electrode layer, and the second adhesion strength is greater than the first adhesion strength. An insulator layer is deposited on the interfacial layer. A top electrode layer is deposited on the insulator layer. The top and bottom electrode layers, the insulator layer, and the interfacial layer are patterned to form a MIM capacitor.
    Type: Grant
    Filed: October 14, 2021
    Date of Patent: February 28, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsing-Lien Lin, Chii-Ming Wu, Chia-Shiung Tsai, Chung-Yi Yu, Rei-Lin Chu
  • Patent number: 11551927
    Abstract: A high electron mobility transistor includes: a first semiconductor layer over a substrate, and a second semiconductor layer over the first semiconductor layer, the second semiconductor layer having a band gap discontinuity with the first semiconductor layer, and at the first semiconductor layer and/or the second conductive layer includes indium. A top layer is over the second semiconductor layer, and a metal layer is over, and extends into, the top layer, the top layer separating the metal layer from the second semiconductor layer. A gate electrode is over the top layer, a third semiconductor layer being between the gate electrode and the top layer, where a sidewall of the third semiconductor layer and a sidewall of the metal layer are separated. A source and drain are on opposite sides of the gate electrode, the top layer extending continuously from below the source, below the gate electrode, and below the drain.
    Type: Grant
    Filed: November 4, 2020
    Date of Patent: January 10, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Po-Chun Liu, Chung-Chieh Hsu, Chi-Ming Chen, Chung-Yi Yu, Chen-Hao Chiang, Min-Chang Ching
  • Patent number: 11527702
    Abstract: A device includes a substrate, a first layer of getter material, a first electrode, an insulator element, a second electrode, a first input-output electrode, and a second input-output electrode. The first layer of getter material is deposited on the substrate. The first electrode is formed in a first conductive layer deposited on the first layer of getter material. The first layer of getter material has a getter capacity for hydrogen that is higher than the first electrode. The insulator element is formed in a piezoelectric layer deposited on the first electrode. The second electrode is formed in a second conductive layer deposited on the insulator element. The first input-output electrode is conductively connecting to the first layer of getter material. The second input-output electrode is conductively connecting to the second electrode.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: December 13, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Ming Chen, Chung-Yi Yu
  • Patent number: 11522049
    Abstract: Various embodiments of the present disclosure are directed towards a semiconductor device including a gate electrode over a semiconductor substrate. An epitaxial source/drain layer is disposed on the semiconductor substrate and is laterally adjacent to the gate electrode. The epitaxial source/drain layer comprises a first dopant. A diffusion barrier layer is between the epitaxial source/drain layer and the semiconductor substrate. The diffusion barrier layer comprises a barrier dopant that is different from the first dopant.
    Type: Grant
    Filed: October 7, 2020
    Date of Patent: December 6, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuei-Ming Chen, Chi-Ming Chen, Chung-Yi Yu
  • Patent number: 11515408
    Abstract: Various embodiments of the present application are directed towards a group III-V device including a rough buffer layer. The rough buffer layer overlies a silicon substrate, a buffer structure overlies the rough buffer layer, and a heterojunction structure overlies the buffer structure. The buffer structure causes band bending and formation of a two-dimensional hole gas (2DHG) in the rough buffer layer. The rough buffer layer includes silicon or some other suitable semiconductor material and, in some embodiments, is doped. A top surface of the rough buffer layer and/or a bottom surface of the rough buffer layer is/are rough to promote carrier scattering along the top and bottom surfaces. The carrier scattering reduces carrier mobility and increases resistance at the 2DHG. The increased resistance increases an overall resistance of the silicon substrate, which reduces substrate loses and increases a power added efficiency (PAE).
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: November 29, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuei-Ming Chen, Chi-Ming Chen, Chung-Yi Yu
  • Publication number: 20220367699
    Abstract: Various embodiments of the present application are directed towards a group III-V device including a rough buffer layer. The rough buffer layer overlies a silicon substrate, a buffer structure overlies the rough buffer layer, and a heterojunction structure overlies the buffer structure. The buffer structure causes band bending and formation of a two-dimensional hole gas (2DHG) in the rough buffer layer. The rough buffer layer includes silicon or some other suitable semiconductor material and, in some embodiments, is doped. A top surface of the rough buffer layer and/or a bottom surface of the rough buffer layer is/are rough to promote carrier scattering along the top and bottom surfaces. The carrier scattering reduces carrier mobility and increases resistance at the 2DHG. The increased resistance increases an overall resistance of the silicon substrate, which reduces substrate loses and increases a power added efficiency (PAE).
    Type: Application
    Filed: July 19, 2022
    Publication date: November 17, 2022
    Inventors: Kuei-Ming Chen, Chi-Ming Chen, Chung-Yi Yu
  • Publication number: 20220367631
    Abstract: Various embodiments of the present disclosure are directed towards a semiconductor device including a gate electrode over a semiconductor substrate. An epitaxial source/drain layer is disposed on the semiconductor substrate and is laterally adjacent to the gate electrode. The epitaxial source/drain layer comprises a first dopant. A diffusion barrier layer is between the epitaxial source/drain layer and the semiconductor substrate. The diffusion barrier layer comprises a barrier dopant that is different from the first dopant.
    Type: Application
    Filed: July 21, 2022
    Publication date: November 17, 2022
    Inventors: Kuei-Ming Chen, Chi-Ming Chen, Chung-Yi Yu
  • Publication number: 20220352065
    Abstract: Various embodiments of the present application are directed towards a metal-insulator-metal (MIM) capacitor. The MIM capacitor comprises a bottom electrode disposed over a semiconductor substrate. A top electrode is disposed over and overlies the bottom electrode. A capacitor insulator structure is disposed between the bottom electrode and the top electrode. The capacitor insulator structure comprises at least three dielectric structures vertically stacked upon each other. A bottom half of the capacitor insulator structure is a mirror image of a top half of the capacitor insulator structure in terms of dielectric materials of the dielectric structures.
    Type: Application
    Filed: July 18, 2022
    Publication date: November 3, 2022
    Inventors: Hsing-Lien Lin, Cheng-Te Lee, Rei-Lin Chu, Chii-Ming Wu, Yeur-Luen Tu, Chung-Yi Yu
  • Publication number: 20220344575
    Abstract: In some embodiments, the present disclosure relates to a processing tool that includes a wafer chuck disposed within a hot plate chamber and having an upper surface configured to hold a semiconductor wafer. A heating element is disposed within the wafer chuck and configured to increase a temperature of the wafer chuck. A motor is coupled to the wafer chuck and configured to rotate the wafer chuck around an axis of rotation extending through the upper surface of the wafer chuck. The processing tool further includes control circuitry coupled to the motor and configured to operate the motor to rotate the wafer chuck while the temperature of the wafer chuck is increased to form a piezoelectric layer from a sol-gel solution layer on the semiconductor wafer.
    Type: Application
    Filed: April 27, 2021
    Publication date: October 27, 2022
    Inventors: Chih-Ming Chen, Chiao-Chun Hsu, Chung-Yi Yu
  • Publication number: 20220336652
    Abstract: A semiconductor structure includes a III-V compound layer, a first barrier layer, a second barrier layer, and an active layer. The III-V compound layer includes a first region, a second region, and a third region. The second region is sandwiched between the first region and the third region. The first barrier layer is sandwiched between the first region and the second region, and the second barrier layer is sandwiched between the second region and the third region. The III-V compound layer includes a first band gap, the first barrier layer includes a second band gap, and the second barrier layer includes a third band gap. The second band gap and the third band gap are greater than the first band gap.
    Type: Application
    Filed: July 6, 2022
    Publication date: October 20, 2022
    Inventors: CHI-MING CHEN, KUEI-MING CHEN, CHUNG-YI YU
  • Publication number: 20220336726
    Abstract: The present disclosure relates to a method of forming a device. The method includes depositing a first layer of getter material on a substrate. A first electrode is formed in a first conductive layer deposited on the first layer of getter material. An insulator element is formed in a piezoelectric layer deposited on the first electrode. A second electrode is formed in a second conductive layer deposited on the insulator element. A first input-output electrode is formed to be conductively connected to the first layer of getter material and a second input-output electrode is formed to be conductively connected to the second electrode.
    Type: Application
    Filed: June 29, 2022
    Publication date: October 20, 2022
    Inventors: Chih-Ming Chen, Chung-Yi Yu
  • Publication number: 20220328419
    Abstract: Various embodiments of the present disclosure are directed towards a semiconductor processing system including an overlay (OVL) shift measurement device. The OVL shift measurement device is configured to determine an OVL shift between a first wafer and a second wafer, where the second wafer overlies the first wafer. A photolithography device is configured to perform one or more photolithography processes on the second wafer. A controller is configured to perform an alignment process on the photolithography device according to the determined OVL shift. The photolithography device performs the one or more photolithography processes based on the OVL shift.
    Type: Application
    Filed: June 7, 2022
    Publication date: October 13, 2022
    Inventors: Yeong-Jyh Lin, Ching I. Li, De-Yang Chiou, Sz-Fan Chen, Han-Jui Hu, Ching-Hung Wang, Ru-Liang Lee, Chung-Yi Yu
  • Publication number: 20220328640
    Abstract: A method includes forming a gate structure over a silicon on insulator (SOI) substrate. The SOI substrate comprising: a base semiconductor layer; an insulator layer over the base semiconductor layer; and a top semiconductor layer over the insulator layer. The method further includes depositing a gate spacer layer over a top surface and along a sidewall of the gate structure; etching the gate spacer layer to define a gate spacer on the sidewall of the gate structure; after etching the gate spacer layer, etching a recess into the top semiconductor layer using a first etch process; and after the first etch process, extending the recess further into the top semiconductor layer using a second etch process. The first etch process is different from the second etch process. The method further includes forming a source/drain region in the recess after the second etch process.
    Type: Application
    Filed: June 30, 2022
    Publication date: October 13, 2022
    Inventors: Chi-Ming Chen, Kuei-Ming Chen, Po-Chun Liu, Chung-Yi Yu
  • Publication number: 20220311357
    Abstract: In some embodiments, the present disclosure relates to a microelectromechanical system (MEMS) comb actuator including a comb structure. The comb structure includes a support layer having a first material and a plurality of protrusions extending away from a first surface of the support layer in a first direction. The plurality of protrusions are also made of the first material. The plurality of protrusions are separated along a second direction parallel to the first surface of the support layer. The MEMS comb actuator may further include a dielectric liner structure that continuously and completely covers the first surface of the support layer and outer surfaces of the plurality of protrusions. The dielectric liner structure includes a connective portion that continuously connects topmost surfaces of at least two of the plurality of protrusions.
    Type: Application
    Filed: June 16, 2022
    Publication date: September 29, 2022
    Inventors: Chiao-Chun Hsu, Chih-Ming Chen, Chung-Yi Yu, Lung Yuan Pan
  • Patent number: 11430729
    Abstract: Various embodiments of the present application are directed towards a metal-insulator-metal (MIM) capacitor. The MIM capacitor comprises a bottom electrode disposed over a semiconductor substrate. A top electrode is disposed over and overlies the bottom electrode. A capacitor insulator structure is disposed between the bottom electrode and the top electrode. The capacitor insulator structure comprises at least three dielectric structures vertically stacked upon each other. A bottom half of the capacitor insulator structure is a mirror image of a top half of the capacitor insulator structure in terms of dielectric materials of the dielectric structures.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: August 30, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsing-Lien Lin, Cheng-Te Lee, Rei-Lin Chu, Chii-Ming Wu, Yeur-Luen Tu, Chung-Yi Yu
  • Patent number: 11417520
    Abstract: A semiconductor structure includes a substrate. The semiconductor structure further includes a first III-V layer over the substrate, wherein the first III-V layer includes a first dopant type. The semiconductor structure further includes a second III-V layer over the first III-V layer, wherein the second III-V layer has a second dopant type opposite the first dopant type. The semiconductor structure further includes a third III-V layer over the second III-V layer, wherein the third III-V layer has the first dopant type. The semiconductor structure further includes a fourth III-V layer over the third III-V layer, the fourth III-V layer having the second dopant type. The semiconductor structure further includes an active layer over the fourth III-V layer. The semiconductor structure further includes a dielectric layer over the active layer.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: August 16, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chi-Ming Chen, Po-Chun Liu, Chung-Yi Yu, Chia-Shiung Tsai
  • Patent number: 11387748
    Abstract: In some embodiments, the present disclosure relates to a microelectromechanical system (MEMS) comb actuator including a comb structure. The comb structure includes a support layer having a first material and a plurality of protrusions extending away from a first surface of the support layer in a first direction. The plurality of protrusions are also made of the first material. The plurality of protrusions are separated along a second direction parallel to the first surface of the support layer. The MEMS comb actuator may further include a dielectric liner structure that continuously and completely covers the first surface of the support layer and outer surfaces of the plurality of protrusions. The dielectric liner structure includes a connective portion that continuously connects topmost surfaces of at least two of the plurality of protrusions.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: July 12, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chiao-Chun Hsu, Chih-Ming Chen, Chung-Yi Yu, Lung Yuan Pan
  • Publication number: 20220204340
    Abstract: A microelectromechanical system (MEMS) structure and method of forming the MEMS device, including forming a first metallization structure over a complementary metal-oxide-semiconductor (CMOS) wafer, where the first metallization structure includes a first sacrificial oxide layer and a first metal contact pad. A second metallization structure is formed over a MEMS wafer, where the second metallization structure includes a second sacrificial oxide layer and a second metal contact pad. The first metallization structure and second metallization structure are then bonded together. After the first metallization structure and second metallization structure are bonded together, patterning and etching the MEMS wafer to form a MEMS element over the second sacrificial oxide layer. After the MEMS element is formed, removing the first sacrificial oxide layer and second sacrificial oxide layer to allow the MEMS element to move freely about an axis.
    Type: Application
    Filed: March 16, 2022
    Publication date: June 30, 2022
    Inventors: Hung-Hua Lin, Chang-Ming Wu, Chung-Yi Yu, Ping-Yin Liu, Jung-Huei Peng
  • Patent number: 11362038
    Abstract: Various embodiments of the present disclosure are directed towards a method for forming a semiconductor structure. The method includes forming a plurality of upper alignment marks on a semiconductor wafer. A plurality of lower alignment marks is formed on a handle wafer and correspond to the upper alignment marks. The semiconductor wafer is bonded to the handle wafer such that centers of the upper alignment marks are laterally offset from centers of corresponding lower alignment marks. An overlay (OVL) shift is measured between the handle wafer and the semiconductor wafer by detecting the plurality of upper alignment marks and the plurality of lower alignment marks. A photolithography process is performed by a photolithography tool to partially form an integrated circuit (IC) structure over the semiconductor wafer. During the photolithography process the photolithography tool is compensatively aligned according to the OVL shift.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: June 14, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yeong-Jyh Lin, Ching I Li, De-Yang Chiou, Sz-Fan Chen, Han-Jui Hu, Ching-Hung Wang, Ru-Liang Lee, Chung-Yi Yu