Patents by Inventor Chung-Yi Yu

Chung-Yi Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10276513
    Abstract: Wafer bowing induced by deep trench capacitors is ameliorated by structures formed on the reverse side of the wafer. The structures on the reverse side include tensile films. The films can be formed within trenches on the back side of the wafer, which enhances their effect. In some embodiments, the wafers are used to form 3D-IC devices. In some embodiments, the 3D-IC device includes a high voltage or high power circuit.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: April 30, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Ming Chen, Szu-Yu Wang, Chung-Yi Yu
  • Publication number: 20190100431
    Abstract: The present disclosure provides a packaging method, including: providing a first semiconductor substrate; forming a bonding region on the first semiconductor substrate, wherein the bonding region of the first semiconductor substrate includes a first bonding metal layer and a second bonding metal layer; providing a second semiconductor substrate having a bonding region, wherein the bonding region of the second semiconductor substrate includes a third bonding layer; and bonding the first semiconductor substrate to the second semiconductor substrate by bringing the bonding region of the first semiconductor substrate in contact with the bonding region of the second semiconductor substrate; wherein the first and third bonding metal layers include copper (Cu), and the second bonding metal layer includes Tin (Sn). An associated packaging structure is also disclosed.
    Type: Application
    Filed: July 26, 2018
    Publication date: April 4, 2019
    Inventors: Chih-Ming Chen, Yuan-Chih Hsieh, Chung-Yi Yu
  • Publication number: 20190092627
    Abstract: A microelectromechanical system (MEMS) structure and method of forming the MEMS device, including forming a first metallization structure over a complementary metal-oxide-semiconductor (CMOS) wafer, where the first metallization structure includes a first sacrificial oxide layer and a first metal contact pad. A second metallization structure is formed over a MEMS wafer, where the second metallization structure includes a second sacrificial oxide layer and a second metal contact pad. The first metallization structure and second metallization structure are then bonded together. After the first metallization structure and second metallization structure are bonded together, patterning and etching the MEMS wafer to form a MEMS element over the second sacrificial oxide layer. After the MEMS element is formed, removing the first sacrificial oxide layer and second sacrificial oxide layer to allow the MEMS element to move freely about an axis.
    Type: Application
    Filed: December 27, 2017
    Publication date: March 28, 2019
    Inventors: Hung-Hua Lin, Chang-Ming Wu, Chung-Yi Yu, Ping-Yin Liu, Jung-Huei Peng
  • Publication number: 20190027360
    Abstract: A semiconductor structure including a substrate and a nucleation layer over the substrate. The semiconductor structure further includes a first III-V layer over the nucleation layer, wherein the first III-V layer includes a first dopant type. The semiconductor structure further includes one or more sets of III-V layers over the first III-V layer. Each set of the one or more sets of III-V layers includes a lower III-V layer, wherein the lower III-V layer has a second dopant type opposite the first dopant type, and an upper III-V layer on the lower III-V layer, wherein the upper III-V layer has the first dopant type. The semiconductor structure further includes a second III-V layer over the one or more sets of III-V layers, the second III-V layer having the second dopant type.
    Type: Application
    Filed: September 10, 2018
    Publication date: January 24, 2019
    Inventors: Chi-Ming CHEN, Po-Chun LIU, Chung-Yi YU, Chia-Shiung TSAI
  • Publication number: 20190013399
    Abstract: The present disclosure, in some embodiments, relates to a transistor device. The transistor device includes a layer of GaN over a substrate. A mobility-enhancing layer of AlzGa(1-z)N is over the layer of GaN and has a first molar fraction z in a first range of between approximately 0.25 and approximately 0.4. A resistance-reducing layer of AlxGa(1-x)N is over the mobility-enhancing layer and has a second molar fraction x in a second range of between approximately 0.1 and approximately 0.15. A source has a source contact and an underlying source region. A drain has a drain contact and an underlying drain region. The source and drain regions extend through the resistance-reducing layer of AlxGa(1-x)N and into the mobility-enhancing layer of AlzGa(1-z)N. The source and drain regions have bottoms over a bottom of the mobility-enhancing layer of AlzGa(1-z)N. A gate structure is laterally between the source and drain contacts.
    Type: Application
    Filed: September 17, 2018
    Publication date: January 10, 2019
    Inventors: Po-Chun Liu, Chung-Yi Yu, Chi-Ming Chen, Chen-Hao Chiang
  • Patent number: 10164038
    Abstract: A method including forming a III-V compound layer on a substrate and implanting a main dopant in the III-V compound layer to form source and drain regions. The method further includes implanting a group V species into the source and drain regions. A semiconductor device including a substrate and a III-V compound layer over the substrate. The semiconductor device further includes source and drain regions in the III-V layer, wherein the source and drain regions comprises a first dopant and a second dopant, and the second dopant comprises a group V material.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Han-Chin Chiu, Chen-Hao Chiang, Chi-Ming Chen, Chung-Yi Yu
  • Patent number: 10157994
    Abstract: A semiconductor structure includes a first III-V compound layer. A second III-V compound layer is disposed on the first III-V compound layer and is different from the first III-V compound layer in composition. A dielectric passivation layer is disposed on the second III-V compound layer. A source feature and a drain feature are disposed on the second III-V compound layer, and extend through the dielectric passivation layer. A gate electrode is disposed over the second III-V compound layer between the source feature and the drain feature. The gate electrode has an exterior surface. An oxygen containing region is embedded at least in the second III-V compound layer under the gate electrode. A gate dielectric layer has a first portion and a second portion. The first portion is under the gate electrode and on the oxygen containing region. The second portion is on a portion of the exterior surface of the gate electrode.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: December 18, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Han-Chin Chiu, Chi-Ming Chen, Chung-Yi Yu, Chia-Shiung Tsai
  • Patent number: 10109736
    Abstract: A transistor with a multi-strained layer superlattice (SLS) structure is provided. A first strained layer superlattice (SLS) layer is arranged over a substrate. A first buffer layer is arranged over the first SLS layer and includes dopants configured to increase a resistance of the first buffer layer. A second SLS layer is arranged over the first buffer layer. A second buffer layer is arranged over the second SLS layer and includes dopants configured to increase a resistance of the second buffer layer. A channel layer is arranged over the second buffer layer. An active layer is arranged over and directly abuts the channel layer. The channel and active layers collectively define a heterojunction. A method for manufacturing the transistor is also provided.
    Type: Grant
    Filed: February 12, 2015
    Date of Patent: October 23, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chi-Ming Chen, Chung-Yi Yu, Po-Chun Liu
  • Patent number: 10109729
    Abstract: The present disclosure relates to a transistor device having a donor bi-layer configured to provide low-resistance to source and drain contacts while maintaining a high-mobility two-dimensional electron gas within a channel layer, and an associated method of formation. In some embodiments, the transistor device has a channel layer disposed over a substrate and a donor bi-layer disposed over the channel layer. The donor bi-layer includes a mobility-enhancing layer of AlzGa(1-z)N disposed over the channel layer and having a first molar fraction z in a first range, and a resistance-reducing layer of AlxGa(1-x)N disposed on and in contact with the mobility-enhancing layer of AlzGa(1-z)N and having a second molar fraction x in a second range less than the first range. Source and drain contacts are over the resistance-reducing layer of AlxGa(1-x)N. The donor bi-layer has a conduction band energy that monotonically decreases from top to bottom surfaces of the donor bi-layer.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: October 23, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Po-Chun Liu, Chung-Yi Yu, Chi-Ming Chen, Chen-Hao Chiang
  • Patent number: 10079296
    Abstract: A semiconductor device includes an indium gallium nitride layer over an active layer. The semiconductor device further includes an annealed region beneath the indium gallium nitride layer, the annealed region comprising indium atoms driven from the indium gallium nitride layer into the active layer.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: September 18, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chen-Hao Chiang, Po-Chun Liu, Chi-Ming Chen, Min-Chang Ching, Chung-Yi Yu, Chia-Shiung Tsai, Ru-Liang Lee
  • Patent number: 10074537
    Abstract: A method of forming a semiconductor structure includes depositing a first III-V layer over a substrate. The method includes depositing a first III-V compound layer over the first III-V layer. Depositing the first III-V compound layer includes depositing a lower III-V compound layer. Depositing the first III-V compound layer includes depositing an upper III-V compound layer over the lower III-V compound layer, wherein the first III-V layer has a doping concentration greater than that of the upper III-V compound layer. The method includes repeating depositing III-V compound layers until a number of III-V compound layers is equal to a predetermined number of III-V compound layers. The method includes forming a second III-V compound layer an upper most III-V compound layer, wherein the second III-V compound layer is undoped or doped. The method includes forming an active layer over the second III-V compound layer.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: September 11, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chi-Ming Chen, Po-Chun Liu, Chung-Yi Yu, Chia-Shiung Tsai
  • Publication number: 20180230003
    Abstract: An embodiment method includes forming a first plurality of bond pads on a device substrate, depositing a spacer layer over and extending along sidewalls of the first plurality of bond pads, and etching the spacer layer to remove lateral portions of the spacer layer and form spacers on sidewalls of the first plurality of bond pads. The method further includes bonding a cap substrate including a second plurality of bond pads to the device substrate by bonding the first plurality of bond pads to the second plurality of bond pads.
    Type: Application
    Filed: April 13, 2018
    Publication date: August 16, 2018
    Inventors: Chih-Ming Chen, Ping-Yin Liu, Chung-Yi Yu, Yeur-Luen Tu
  • Patent number: 10014402
    Abstract: A high electron mobility transistor (HEMT) device structure is provided. The HEMT device structure includes a channel layer formed over a substrate and an active layer formed over the channel layer. The HEMT device structure also includes a gate structure formed over the active layer, and the gate structure includes: a p-doped gallium nitride (p-GaN) layer or a p-doped aluminum gallium nitride (p-GaN) layer formed over the active layer, and a portion of the p-GaN layer or p-AlGaN layer has a stepwise or gradient doping concentration. The HEMT device structure also includes a gate electrode over the p-GaN layer or p-AlGaN layer.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: July 3, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuei-Ming Chen, Chi-Ming Chen, Chung-Yi Yu
  • Publication number: 20180166565
    Abstract: A high electron mobility transistor (HEMT) device structure is provided. The HEMT device structure includes a channel layer formed over a substrate and an active layer formed over the channel layer. The HEMT device structure also includes a gate structure formed over the active layer, and the gate structure includes: a p-doped gallium nitride (p-GaN) layer or a p-doped aluminum gallium nitride (p-GaN) layer formed over the active layer, and a portion of the p-GaN layer or p-AlGaN layer has a stepwise or gradient doping concentration. The HEMT device structure also includes a gate electrode over the p-GaN layer or p-AlGaN layer.
    Type: Application
    Filed: February 16, 2017
    Publication date: June 14, 2018
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuei-Ming CHEN, Chi-Ming CHEN, Chung-Yi YU
  • Publication number: 20180151692
    Abstract: A semiconductor structure includes a first III-V compound layer. A second III-V compound layer is disposed on the first III-V compound layer and is different from the first III-V compound layer in composition. A dielectric passivation layer is disposed on the second III-V compound layer. A source feature and a drain feature are disposed on the second III-V compound layer, and extend through the dielectric passivation layer. A gate electrode is disposed over the second III-V compound layer between the source feature and the drain feature. The gate electrode has an exterior surface. An oxygen containing region is embedded at least in the second III-V compound layer under the gate electrode. A gate dielectric layer has a first portion and a second portion. The first portion is under the gate electrode and on the oxygen containing region. The second portion is on a portion of the exterior surface of the gate electrode.
    Type: Application
    Filed: January 9, 2018
    Publication date: May 31, 2018
    Inventors: Han-Chin Chiu, Chi-Ming Chen, Chung-Yi Yu, Chia-Shiung Tsai
  • Patent number: 9957156
    Abstract: An embodiment method includes forming a first plurality of bond pads on a device substrate, depositing a spacer layer over and extending along sidewalls of the first plurality of bond pads, and etching the spacer layer to remove lateral portions of the spacer layer and form spacers on sidewalls of the first plurality of bond pads. The method further includes bonding a cap substrate including a second plurality of bond pads to the device substrate by bonding the first plurality of bond pads to the second plurality of bond pads.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: May 1, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Ming Chen, Ping-Yin Liu, Chung-Yi Yu, Yeur-Luen Tu
  • Patent number: 9929007
    Abstract: The present disclosure relates to a structure and method for reducing dangling bonds around quantum dots in a memory cell. In some embodiments, the structure has a semiconductor substrate having a tunnel dielectric layer disposed over it and a plurality of quantum dots disposed over the tunnel dielectric layer. A passivation layer is formed conformally over outer surfaces of the quantum dots and a top dielectric layer is disposed conformally around the passivation layer. The passivation layer can be formed prior to forming the top dielectric layer over the quantum dots or after forming the top dielectric layer. The passivation layer reduces the dangling bonds at an interface between the quantum dots and the top dielectric layer, thereby preventing trap sites that may hinder operations of the memory cell.
    Type: Grant
    Filed: December 26, 2014
    Date of Patent: March 27, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Ming Chen, Tsu-Hui Su, Szu-Yu Wang, Chung-Yi Yu, Chia-Shiung Tsai
  • Patent number: 9899493
    Abstract: A High Electron Mobility Transistor (HEMT) includes a first III-V compound layer having a first band gap, and a second III-V compound layer having a second band gap over the first III-V compound layer. The second band gap is smaller than the first band gap. The HEMT further includes a third III-V compound layer having a third band gap over the second III-V compound layer, wherein the third band gap is greater than the first band gap. A gate electrode is formed over the third III-V compound layer. A source region and a drain region are over the third III-V compound layer and on opposite sides of the gate electrode.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: February 20, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hao Chiang, Po-Chun Liu, Han-Chin Chiu, Chi-Ming Chen, Chung-Yi Yu
  • Patent number: 9876093
    Abstract: A semiconductor structure includes a first III-V compound layer. A second III-V compound layer is disposed on the first III-V compound layer and is different from the first III-V compound layer in composition. A dielectric passivation layer is disposed on the second III-V compound layer. A source feature and a drain feature are disposed on the second III-V compound layer, and extend through the dielectric passivation layer. A gate electrode is disposed over the second III-V compound layer between the source feature and the drain feature. The gate electrode has an exterior surface. An oxygen containing region is embedded at least in the second III-V compound layer under the gate electrode. A gate dielectric layer has a first portion and a second portion. The first portion is under the gate electrode and on the oxygen containing region. The second portion is on a portion of the exterior surface of the gate electrode.
    Type: Grant
    Filed: June 7, 2016
    Date of Patent: January 23, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Han-Chin Chiu, Chi-Ming Chen, Chung-Yi Yu, Chia-Shiung Tsai
  • Patent number: 9818858
    Abstract: A transistor with a multi-layer active layer having at least one partial recess is provided. The transistor includes a channel layer arranged over a substrate. The channel layer has a first bandgap. The transistor includes a first active layer arranged over the channel layer. The first active layer has a second bandgap different from the first band gap such that the first active layer and the channel layer meet at a heterojunction. The transistor includes a second active layer arranged over the first active layer. The transistor also includes a dielectric layer arranged over the second active layer. The transistor further includes gate electrode having gate edges that are laterally adjacent to the dielectric layer. At least one gate edge of the gate edges is laterally separated from the second active layer by a first recess.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: November 14, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chi-Ming Chen, Chung-Yi Yu, Kuei-Ming Chen