Patents by Inventor Claire Fenouillet-Beranger

Claire Fenouillet-Beranger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150061023
    Abstract: The invention relates to an IC with an electrostatic discharge protection device. There is a buried insulant layer 50 nm or less in thickness and first and second bipolar transistors on the insulant layer, one being an npn transistor and the other a pnp transistor. The base of the first transistor is merged with the collector of the second transistor and the base of the second transistor is merged with the collector of the first transistor. The first and second bipolar transistors are configured to selectively conduct a discharge current between two electrodes of the protection device. There is a first semiconductor ground plane under the insulant layer, being electrically biased, extending until it is plumb with the base of the first bipolar transistor, exhibiting a first type of doping identical to that of the base of the first bipolar transistor with a doping density at least ten times greater.
    Type: Application
    Filed: August 4, 2014
    Publication date: March 5, 2015
    Inventors: Yohann Solaro, Sorin Cristoloveanu, Claire Fenouillet-Beranger, Pascal Fonteneau
  • Patent number: 8936993
    Abstract: A hybrid substrate comprises first and second active areas made from semiconductor materials laterally offset from one another and separated by an isolation area. The main surfaces of the isolation area and of the first active area form a plane. The hybrid substrate is obtained from a source substrate successively comprising layers made from a first and second semiconductor materials separated by an isolation layer. A single etching mask is used to pattern the isolation area, first active area and second active area. The main surface of the first active area is released thereby forming voids in the source substrate. The etching mask is eliminated above the first active area. A first isolation material is deposited, planarized and etched until the main surface of the first active area is released.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: January 20, 2015
    Assignees: Commissariat a l'Energie Atomique et aux Energies Alternatives, STMicroelectronics (Crolles 2) SAS
    Inventors: Claire Fenouillet-Béranger, Stéphane Denorme, Philippe Coronel
  • Patent number: 8877600
    Abstract: A method for manufacturing a hybrid SOI/bulk substrate, including the steps of starting from an SOI wafer comprising a single-crystal semiconductor layer called SOI layer, on an insulating layer, on a single-crystal semiconductor substrate; depositing on the SOI layer at least one masking layer and forming openings crossing the masking layer, the SOI layer, and the insulating layer, to reach the substrate; growing by a repeated alternation of selective epitaxy and partial etching steps a semiconductor material; and etching insulating trenches surrounding said openings filled with semiconductor material, while encroaching inwards over the periphery of the openings.
    Type: Grant
    Filed: December 12, 2013
    Date of Patent: November 4, 2014
    Assignees: STMicroelectronics, Inc., STMicroelectronics SA, STMicroelectronics (Crolles 2) SAS, Commissariat à l'Énergie Atomique et aux Énergies Alternatives
    Inventors: Claire Fenouillet-Beranger, Stephane Denorme, Nicolas Loubet, Qing Liu, Emmanuel Richard, Pierre Perreau
  • Publication number: 20140319648
    Abstract: An integrated circuit includes first and second electronic components, a buried UTBOX insulating layer, first and second ground planes plumb with the first and second electronic components, first and second wells, first and second biasing electrodes making contact with the first and second wells and with the first and second ground planes, a third electrode making contact with the first well, a first trench isolation separating the first and third electrodes and extending through the buried insulating layer as far as into the first well, and a second trench isolation that isolates the first electrode from the first component, and that does not extend as far as the interface between the first ground plane and the first well.
    Type: Application
    Filed: April 25, 2014
    Publication date: October 30, 2014
    Inventors: Claire Fenouillet-Beranger, Pascal Fonteneau
  • Publication number: 20140170834
    Abstract: A method for manufacturing a hybrid SOI/bulk substrate, including the steps of starting from an SOI wafer comprising a single-crystal semiconductor layer called SOI layer, on an insulating layer, on a single-crystal semiconductor substrate; depositing on the SOI layer at least one masking layer and forming openings crossing the masking layer, the SOI layer, and the insulating layer, to reach the substrate; growing by a repeated alternation of selective epitaxy and partial etching steps a semiconductor material; and etching insulating trenches surrounding said openings filled with semiconductor material, while encroaching inwards over the periphery of the openings.
    Type: Application
    Filed: December 12, 2013
    Publication date: June 19, 2014
    Applicants: STMicroelectronics (Crolles 2) SAS, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, STMicroelectronics, Inc., STMicroelectronics S.A.
    Inventors: Claire Fenouillet-Beranger, Stephane Denorme, Nicolas Loubet, Qing Liu, Emmanuel Richard, Pierre Perreau
  • Patent number: 8674443
    Abstract: A support substrate comprises first and second counter-electrodes arranged in the same plane at the level of a surface of the support substrate. An electrically insulating area separates the first and second counter-electrodes. A semi-conducting area with first and second portions is separated from the support substrate by an electrically insulating material. The electrically insulating material is different from the material forming the support substrate. The first portion of the semi-conducting area is facing the first counter-electrode. The second portion of the semi-conducting area is facing the second counter-electrode.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: March 18, 2014
    Assignees: Commissariat à l'Energie Atomique et aux Energies Alternatives, STMicroelectronics (Crolles 2) SAS
    Inventors: Philippe Coronel, Claire Fenouillet-Beranger, Stephane Denorme, Olivier Thomas
  • Publication number: 20140017858
    Abstract: An integrated circuit includes a transistor, an UTBOX buried insulating layer disposed under it, a ground plane disposed under the layer, a well disposed under the plane, a first trench made at a periphery of the transistor and extending through the layer and into the well, a substrate situated under the well, a p-n diode made on a side of the transistor and comprising first and second zones of opposite doping, the first zone being configured for electrical connection to a first electrode of the transistor, wherein first and second zones are coplanar with the plane, a second trench for separating the first and second zones, the second trench extending through the layer into the plane and until a depth less than an interface between the plane and the well, and a third zone under the second trench forming a junction between the zones.
    Type: Application
    Filed: July 2, 2013
    Publication date: January 16, 2014
    Inventors: Claire Fenouillet-Beranger, Pascal Fonteneau
  • Publication number: 20140017871
    Abstract: An integrated circuit includes a semiconductor substrate, a silicon layer, a buried isolating layer arranged between the substrate and the layer, a bipolar transistor comprising a collector and emitter having a first doping, and a base and a base contact having a second doping, the base forming a junction with the collector and emitter, the collector, emitter, base contact, and the base being coplanar, a well having the second doping and plumb with the collector, emitter, base contact and base, the well separating the collector, emitter and base contact from the substrate, having the second doping and extending between the base contact and base, a isolating trench plumb with the base and extending beyond the layer but without reaching a bottom of the emitter and collector, and another isolating trench arranged between the base contact, collector, and emitter, the trench extending beyond the buried layer into the well.
    Type: Application
    Filed: July 2, 2013
    Publication date: January 16, 2014
    Inventors: Claire Fenouillet-Beranger, Pascal Fonteneau
  • Publication number: 20140017821
    Abstract: An integrated circuit includes four electronic components, a buried UTBOX layer under and plumb with the electronic components, and two pairs of oppositely doped ground planes plumb with corresponding components under the layer. A first isolation trench mutually isolates the ground planes from corresponding wells made plumb and in contact with the ground planes and exhibiting the first doping type. Bias electrodes contact respective wells and ground planes. One pair of electrodes is for connecting to a first bias voltage and the other pair is for connecting to a second bias voltage. Also included are a semiconductor substrate exhibiting the first type of doping and a deeply buried well exhibiting the second type of doping. The deeply buried well contacts the other wells and separates them from the substrate. Finally, a control electrode couples to the deeply buried well.
    Type: Application
    Filed: July 1, 2013
    Publication date: January 16, 2014
    Inventors: Claire Fenouillet-Beranger, Pascal Fonteneau
  • Publication number: 20140017856
    Abstract: An integrated circuit features a FET, an UTBOX layer plumb with the FET, an underlayer ground plane with first doping plumb with the FET's gate and channel, first and second underlayer semiconducting elements, both plumb with the drain or source, electrodes in contact respectively with the ground plane and with the first element, one having first doping and being connected to a first voltage, the other having the first doping and connected to a second bias voltage different from the first, a semiconducting well having the second doping and plumb with the first ground plane and both elements, a first trench isolating the first FET from other components of the integrated circuit and extending through the layer into the well, and second and third trenches isolating the FET from the electrodes, and extending to a depth less than a plane/well interface.
    Type: Application
    Filed: July 2, 2013
    Publication date: January 16, 2014
    Inventors: Claire Fenouillet-Beranger, Pascal Fonteneau
  • Publication number: 20140015052
    Abstract: An integrated circuit includes an UTBOX insulating layer under and plumb with first and second electronic components, and corresponding ground planes and oppositely-doped wells made plumb with them. The wells contact with corresponding ground planes. A pair of oppositely doped bias electrodes, suitable for connecting corresponding bias voltages, contacts respective wells and ground planes. A third electrode contacts the first well. A first trench isolates one bias electrode from the third electrode and extends through the layer and into the first well. A second trench isolates the first bias electrode from one component. This trench has an extent that falls short of reaching an interface between the first ground plane and the first well.
    Type: Application
    Filed: July 1, 2013
    Publication date: January 16, 2014
    Inventors: Claire Fenouillet-Beranger, Pascal Fonteneau
  • Publication number: 20130323903
    Abstract: A process for fabricating an integrated circuit includes, in a stack of layers including a silicon substrate overlaid with a buried insulating layer overlaid with a silicon layer, etching first trenches into the silicon substrate, depositing a silicon nitride layer on the silicon layer to fill the first trenches and form first trench isolations, forming a mask on the silicon nitride layer, etching second trenches into the silicon substrate, in a pattern defined by the mask, to a depth greater than a depth of the first trenches, filling the second trenches with an electrical insulator to form second trench isolations, carrying out a chemical etch until the silicon layer is exposed, and forming a FET by forming a channel, a source, and a drain of the field effect transistor in the silicon layer.
    Type: Application
    Filed: May 29, 2013
    Publication date: December 5, 2013
    Inventors: Claire Fenouillet-Beranger, Stéphane Denorme
  • Patent number: 8383464
    Abstract: The method for producing a field effect transistor on a substrate comprising a support layer, a sacrificial layer and a semi-conducting layer comprises forming an active area in the semi-conducting layer. The active area is delineated by a closed peripheral insulation pattern and comprises an additional pattern made from insulating material. The method also comprises etching the insulating material of the additional pattern to access the sacrificial layer, etching the sacrificial layer resulting in formation of a first cavity, forming a dielectric layer on a top wall of the first cavity, and depositing an electrically conducting layer in the first cavity. The closed peripheral insulation pattern is formed through the semi-conducting layer and the sacrificial layer.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: February 26, 2013
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Claire Fenouillet-Beranger, Philippe Coronel
  • Patent number: 8368128
    Abstract: An etching mask, comprising the delineation pattern of the gate electrode, of a source contact, a drain contact and a counter-electrode contact, is formed on a substrate of semi-conductor on insulator type. The substrate is covered by a layer of dielectric material and a gate material. The counter-electrode contact is located in the pattern of the gate electrode. The gate material is etched to define the gate electrode, the source contact and drain contacts and the counter-electrode contact. A part of the support substrate is released through the pattern of the counter-electrode contact area. An electrically conductive material is deposited on the free part of the support substrate to form the counter-electrode contact.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: February 5, 2013
    Assignees: Commissariat a l'Energie Atomique et aux Energies Alternatives, STMicroelectronics (Crolles 2) SAS
    Inventors: Claire Fenouillet-Béranger, Olivier Thomas, Philippe Coronel, Stéphane Denorme
  • Patent number: 8314453
    Abstract: The memory cell is of SRAM type with four transistors provided with a counter-electrode. It comprises a first area made from semiconductor material with a first transfer transistor and a first driver transistor connected in series, their common terminal defining a first electric node. A second transfer transistor and a second driver transistor are connected in series on a second area made from semiconductor material and their common terminal defines a second electric node. The support substrate comprises first and second counter-electrodes. The first and second counter-electrodes are located respectively facing the first and second semiconductor material areas. The first transfer transistor and second driver transistor are on a first side of a plane passing through the first and second electric nodes whereas the first driver transistor and second transfer transistor are on the other side of the plane.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: November 20, 2012
    Assignees: Commissariat a l'Energie Atomique et aux Energies Alternatives, STMicroelectronics (Crolles 2) SAS
    Inventors: Olivier Thomas, Claire Fenouillet-Béranger, Philippe Coronel, Stéphane Denorme
  • Publication number: 20110316055
    Abstract: A support substrate comprises first and second counter-electrodes arranged in the same plane at the level of a surface of the support substrate. An electrically insulating area separates the first and second counter-electrodes. A semi-conducting area with first and second portions is separated from the support substrate by an electrically insulating material. The electrically insulating material is different from the material forming the support substrate. The first portion of the semi-conducting area is facing the first counter-electrode. The second portion of the semi-conducting area is facing the second counter-electrode.
    Type: Application
    Filed: June 20, 2011
    Publication date: December 29, 2011
    Applicants: STMICROELECTRONICS (CROLLES 2) SAS, COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Philippe CORONEL, Claire FENOUILLET-BÉRANGER, Stéphane DENORME, Olivier THOMAS
  • Publication number: 20110298019
    Abstract: An etching mask, comprising the delineation pattern of the gate electrode, of a source contact, a drain contact and a counter-electrode contact, is formed on a substrate of semi-conductor on insulator type. The substrate is covered by a layer of dielectric material and a gate material. The counter-electrode contact is located in the pattern of the gate electrode. The gate material is etched to define the gate electrode, the source contact and drain contacts and the counter-electrode contact. A part of the support substrate is released through the pattern of the counter-electrode contact area. An electrically conductive material is deposited on the free part of the support substrate to form the counter-electrode contact.
    Type: Application
    Filed: June 3, 2011
    Publication date: December 8, 2011
    Applicants: STMICROELECTRONICS (CROLLES 2) SAS, COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Claire FENOUILLET-BÉRANGER, Olivier THOMAS, Philippe CORONEL, Stéphane DENORME
  • Publication number: 20110291199
    Abstract: The memory cell is of SRAM type with four transistors provided with a counter-electrode. It comprises a first area made from semiconductor material with a first transfer transistor and a first driver transistor connected in series, their common terminal defining a first electric node. A second transfer transistor and a second driver transistor are connected in series on a second area made from semiconductor material and their common terminal defines a second electric node. The support substrate comprises first and second counter-electrodes. The first and second counter-electrodes are located respectively facing the first and second semiconductor material areas. The first transfer transistor and second driver transistor are on a first side of a plane passing through the first and second electric nodes whereas the first driver transistor and second transfer transistor are on the other side of the plane.
    Type: Application
    Filed: March 28, 2011
    Publication date: December 1, 2011
    Applicants: STMICROELECTRONICS (CROLLES 2) SAS, COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Olivier THOMAS, Claire FENOUILLET-BÉRANGER, Philippe CORONEL, Stéphane DENORME
  • Patent number: 8048751
    Abstract: A gate dielectric, an insulating layer and an etching mask are formed on substrate. The etching mask delineates at least the gate electrode and the source and drain contacts and the source, drain and gate output lines of the first metal level of a field effect device. The gate electrode and the future source and drain contacts are formed simultaneously by etching of the insulating layer. A gate material is deposited to form the gate electrode. The source and drain contacts are formed at least in the insulating layer. The source, drain and gate output lines of the first metal level are formed in the etching mask.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: November 1, 2011
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Claire Fenouillet-Béranger, Philippe Coronel
  • Publication number: 20110147881
    Abstract: A hybrid substrate comprises first and second active areas made from semiconductor materials laterally offset from one another and separated by an isolation area. The main surfaces of the isolation area and of the first active area form a plane. The hybrid substrate is obtained from a source substrate successively comprising layers made from a first and second semiconductor materials separated by an isolation layer. A single etching mask is used to pattern the isolation area, first active area and second active area. The main surface of the first active area is released thereby forming voids in the source substrate. The etching mask is eliminated above the first active area. A first isolation material is deposited, planarized and etched until the main surface of the first active area is released.
    Type: Application
    Filed: December 22, 2010
    Publication date: June 23, 2011
    Applicants: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES, STMICROELECTRONICS (CROLLES 2) SAS
    Inventors: Claire FENOUILLET-BÉRANGER, Stéphane DENORME, Philippe CORONEL