Patents by Inventor Craig Mitchell

Craig Mitchell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9125333
    Abstract: Barrier layers for use in electrical applications. In some embodiments the barrier layer is a laminated barrier layer. In some embodiments the barrier layer includes a graded barrier layer.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: September 1, 2015
    Assignee: Tessera, Inc.
    Inventors: Cyprian Uzoh, Vage Oganesian, Ilyas Mohammed, Belgacem Haba, Piyush Savalia, Craig Mitchell
  • Publication number: 20150221551
    Abstract: A method of forming a conductive element on a substrate and the resulting assembly are provided. The method includes forming a groove in a sacrificial layer overlying a dielectric region disposed on a substrate. The groove preferably extends along a sloped surface of the substrate. The sacrificial layer is preferably removed by a non-photolithographic method, such as ablating with a laser, mechanical milling, or sandblasting. A conductive element is formed in the groove. The grooves may be formed. The grooves and conductive elements may be formed along any surface of the substrate, including within trenches and vias formed therein, and may connect to conductive pads on the front and/or rear surface of the substrate. The conductive elements are preferably formed by plating and may or may not conform to the surface of the substrate.
    Type: Application
    Filed: April 14, 2015
    Publication date: August 6, 2015
    Inventors: Vage Oganesian, Belgacem Haba, Ilyas Mohammed, Craig Mitchell, Piyush Savalia
  • Patent number: 9099479
    Abstract: A microelectronic unit can include a carrier structure having a front surface, a rear surface remote from the front surface, and a recess having an opening at the front surface and an inner surface located below the front surface of the carrier structure. The microelectronic unit can also include a microelectronic element having a top surface adjacent the inner surface, a bottom surface remote from the top surface, and a plurality of contacts at the top surface. The microelectronic unit can also include terminals electrically connected with the contacts of the microelectronic element. The terminals can be electrically insulated from the carrier structure. The microelectronic unit can also include a dielectric region contacting at least the bottom surface of the microelectronic element. The dielectric region can define a planar surface located coplanar with or above the front surface of the carrier structure.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: August 4, 2015
    Assignee: Tessera, Inc.
    Inventors: Vage Oganesian, Belgacem Haba, Craig Mitchell, Ilyas Mohammed, Piyush Savalia
  • Patent number: 9099296
    Abstract: A microelectronic assembly is provided in which first and second electrically conductive pads exposed at front surfaces of first and second microelectronic elements, respectively, are juxtaposed, each of the microelectronic elements embodying active semiconductor devices. An electrically conductive element may extend within a first opening extending from a rear surface of the first microelectronic element towards the front surface thereof, within a second opening extending from the first opening towards the front surface of the first microelectronic element, and within a third opening extending through at least one of the first and second pads to contact the first and second pads. Interior surfaces of the first and second openings may extend in first and second directions relative to the front surface of the first microelectronic element, respectively, to define a substantial angle.
    Type: Grant
    Filed: October 23, 2013
    Date of Patent: August 4, 2015
    Assignee: Tessera, Inc.
    Inventors: Vage Oganesian, Belgacem Haba, Ilyas Mohammed, Craig Mitchell, Piyush Savalia
  • Publication number: 20150187673
    Abstract: A microelectronic component with circuitry includes a substrate (possibly semiconductor) having an opening in a top surface. The circuitry includes a conductive via (possibly metal) in the opening. The opening has a first sidewall of a first material, and the conductive via has a second sidewall of a second material (possibly metal). At least at one side of the opening, the first and second sidewalls are spaced from each other at the top surface of the substrate but the first and second sidewalls meet below the top surface of the substrate at a meeting location. Between the meeting location and the top surface of the substrate, the first and second sidewalls are separated by a third material (possibly foam) which is a dielectric different from the first material. The third material lowers thermal stress in case of thermal expansion compared to a structure in which the third material were replaced with the second material.
    Type: Application
    Filed: March 10, 2015
    Publication date: July 2, 2015
    Inventors: Cyprian Emeka Uzoh, Charles G. Woychik, Terrence Caskey, Kishor V. Desai, Huailiang Wei, Craig Mitchell, Belgacem Haba
  • Patent number: 9041133
    Abstract: A microelectronic image sensor assembly for backside illumination and method of making same are provided. The assembly includes a microelectronic element having contacts exposed at a front face and light sensing elements arranged to receive light of different wavelengths through a rear face. A semiconductor region has an opening overlying at least one of first and second light sensing elements, the semiconductor region having a first thickness between the first light sensing element and the rear face and a second thickness between the second light sensing element and the rear face. A light-absorbing material overlies the semiconductor region within the opening above at least one of the light sensing elements such that the first and second light sensing elements receive light of substantially the same intensity.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: May 26, 2015
    Assignee: NAN CHANG O-FILM OPTOELECTRONICS TECHNOLOGY LTD
    Inventors: Vage Oganesian, Belgacem Haba, Ilyas Mohammed, Piyush Savalia, Craig Mitchell
  • Publication number: 20150130077
    Abstract: A method of fabricating a semiconductor assembly can include providing a semiconductor element having a front surface, a rear surface, and a plurality of conductive pads, forming at least one hole extending at least through a respective one of the conductive pads by processing applied to the respective conductive pad from above the front surface, forming an opening extending from the rear surface at least partially through a thickness of the semiconductor element, such that the at least one hole and the opening meet at a location between the front and rear surfaces, and forming at least one conductive element exposed at the rear surface for electrical connection to an external device, the at least one conductive element extending within the at least one hole and at least into the opening, the conductive element being electrically connected with the respective conductive pad.
    Type: Application
    Filed: September 27, 2014
    Publication date: May 14, 2015
    Inventors: Vage Oganesian, Belgacem Haba, Ilyas Mohammed, Craig Mitchell, Piyush Savalia
  • Patent number: 9018769
    Abstract: A method of forming a conductive element on a substrate and the resulting assembly are provided. The method includes forming a groove in a sacrificial layer overlying a dielectric region disposed on a substrate. The groove preferably extends along a sloped surface of the substrate. The sacrificial layer is preferably removed by a non-photolithographic method, such as ablating with a laser, mechanical milling, or sandblasting. A conductive element is formed in the groove. The grooves may be formed. The grooves and conductive elements may be formed along any surface of the substrate, including within trenches and vias formed therein, and may connect to conductive pads on the front and/or rear surface of the substrate. The conductive elements are preferably formed by plating and may or may not conform to the surface of the substrate.
    Type: Grant
    Filed: April 2, 2014
    Date of Patent: April 28, 2015
    Assignee: Tessera, Inc.
    Inventors: Vage Oganesian, Belgacem Haba, Ilyas Mohammed, Craig Mitchell, Piyush Savalia
  • Publication number: 20150101858
    Abstract: A method is disclosed for making an interconnection component. The steps include forming a mask layer covering a first opening in a sheet-like element that has first and second opposed surfaces; forming a plurality of mask openings in the mask layer, wherein the first opening and a portion of the first surface are partly aligned with each mask opening; and forming electrical conductors on spaced apart portions of the first surface and on spaced apart portions of the interior surface within the first opening which are exposed by the mask openings. The element may consist essentially of a material having a coefficient of thermal expansion of less than 10 parts per million per degree Celsius. Each conductor may extend along an axial direction of the first opening and the first conductors may be fully separated from one another within the first opening.
    Type: Application
    Filed: December 17, 2014
    Publication date: April 16, 2015
    Inventors: Cyprian Emeka Uzoh, Craig Mitchell, Belgacem Haba, Ilyas Mohammed
  • Patent number: 9000600
    Abstract: A component can include a substrate and a conductive via extending within an opening in the substrate. The substrate can have first and second opposing surfaces. The opening can extend from the first surface towards the second surface and can have an inner wall extending away from the first surface. A dielectric material can be exposed at the inner wall. The conductive via can define a relief channel within the opening adjacent the first surface. The relief channel can have an edge within a first distance from the inner wall in a direction of a plane parallel to and within five microns below the first surface, the first distance being the lesser of one micron and five percent of a maximum width of the opening in the plane. The edge can extend along the inner wall to span at least five percent of a circumference of the inner wall.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: April 7, 2015
    Assignee: Invensas Corporation
    Inventors: Cyprian Emeka Uzoh, Charles G. Woychik, Terrence Caskey, Kishor V. Desai, Huailiang Wei, Craig Mitchell, Belgacem Haba
  • Publication number: 20150079733
    Abstract: A microelectronic assembly can include first, second and third stacked substantially planar elements, e.g., of dielectric or semiconductor material, and which may have a CTE of less than 10 ppm/° C. The assembly may be a microelectronic package and may incorporate active semiconductor devices in one, two or more of the first, second or third elements to function cooperatively as a system-in-a-package. In one example, an electrically conductive element having at least a portion having a thickness less than 10 microns, may be formed by plating, and may electrically connect two or more of the first, second or third elements. The conductive element may entirely underlie a surface of another one of the substantially planar elements.
    Type: Application
    Filed: September 22, 2014
    Publication date: March 19, 2015
    Inventors: Vage Oganesian, Belgacem Haba, Ilyas Mohammed, Piyush Savalia, Craig Mitchell
  • Publication number: 20150021788
    Abstract: A microelectronic unit includes a semiconductor element consisting essentially of semiconductor material and having a front surface, a rear surface, a plurality of active semiconductor devices adjacent the front surface, a plurality of conductive pads exposed at the front surface, and an opening extending through the semiconductor element. At least one of the conductive pads can at least partially overlie the opening and can be electrically connected with at least one of the active semiconductor devices. The microelectronic unit can also include a first conductive element exposed at the rear surface for connection with an external component, the first conductive element extending through the opening and electrically connected with the at least one conductive pad, and a second conductive element extending through the opening and insulated from the first conductive element. The at least one conductive pad can overlie a peripheral edge of the second conductive element.
    Type: Application
    Filed: July 24, 2014
    Publication date: January 22, 2015
    Inventors: Vage Oganesian, Belgacem Haba, Ilyas Mohammed, Craig Mitchell, Piyush Savalia
  • Patent number: 8937361
    Abstract: A microelectronic image sensor assembly for backside illumination and method of making same are provided. The assembly includes a microelectronic element having contacts exposed at a front face and light sensing elements arranged to receive light of different wavelengths through a rear face. A semiconductor region has a first thickness between the first light sensing element and the rear face and a second thickness between the second light sensing element and the rear face such that the first and second light sensing elements receive light of substantially the same intensity. A dielectric region is provided at least substantially filling a space of the semiconductor region adjacent at least one of the light sensing elements. The dielectric region may include at least one light guide.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: January 20, 2015
    Assignee: DigitalOptics Corporation
    Inventors: Vage Oganesian, Belgacem Haba, Ilyas Mohammed, Piyush Savalia, Craig Mitchell
  • Patent number: 8916781
    Abstract: An interconnection component includes an element with an opening, a plurality of conductors electrically insulted from one another extending through the opening, and a plurality of second contacts electrically insulated from one another. The element is comprised of a material having a coefficient of thermal expansion of less than 10 parts per million per degree Celsius. At least some of the conductors extend along at least one inner surface of the opening. The conductors define a plurality of wettable first contacts at the first surface. The first contacts are at least partially aligned with the opening in a direction of the thickness and electrically insulated from one another.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: December 23, 2014
    Assignee: Invensas Corporation
    Inventors: Belgacem Haba, Ilyas Mohammed, Craig Mitchell, Cyprian Emeka Uzoh
  • Publication number: 20140342503
    Abstract: A microelectronic assembly includes a substrate and an electrically conductive element. The substrate can have a CTE less than 10 ppm/° C., a major surface having a recess not extending through the substrate, and a material having a modulus of elasticity less than 10 GPa disposed within the recess. The electrically conductive element can include a joining portion overlying the recess and extending from an anchor portion supported by the substrate. The joining portion can be at least partially exposed at the major surface for connection to a component external to the microelectronic unit.
    Type: Application
    Filed: August 4, 2014
    Publication date: November 20, 2014
    Applicant: Tessera, Inc.
    Inventors: Vage Oganesian, Belgacem Haba, Ilyas Mohammed, Piyush Savalia, Craig Mitchell
  • Patent number: 8876042
    Abstract: An assembly includes a unitary nacelle structure and an integrated fan housing for a gas turbine engine assembly. The unitary nacelle structure includes an inlet region and a fan cowl region, and is configured to at least partially circumscribe the integrated fan housing. The integrated fan housing comprises an integral composite structure and includes a fan case sized and configured for encircling a fan blade assembly of an associated gas turbine engine, a fan hub, and a plurality of fan outlet guide vanes. The unitary nacelle structure cooperates with the integrated fan housing to transfer static and dynamic loads directly to a support structure, rather than through the engine core, to minimize backbone bending.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: November 4, 2014
    Assignee: General Electric Company
    Inventors: Donald George LaChapelle, Christopher Charles Glynn, Donald Lee Gardner, Stephen Craig Mitchell, Mullahalli Venkataramaniah Srinivas, Edward Atwood Rainous, David Lance Pennekamp
  • Publication number: 20140319699
    Abstract: Methods and apparatus for forming a semiconductor device are provided which may include any number of features. One feature is a method of forming an interconnect structure that results in the interconnect structure having a top surface and portions of the side walls of the interconnect structure covered in a dissimilar material. In some embodiments, the dissimilar material can be a conductive material or a nano-alloy. The interconnect structure can be formed by removing a portion of the interconnect structure, and covering the interconnect structure with the dissimilar material. The interconnect structure can comprise a damascene structure, such as a single or dual damascene structure, or alternatively, can comprise a silicon-through via (TSV) structure.
    Type: Application
    Filed: July 11, 2014
    Publication date: October 30, 2014
    Inventors: Cyprian Emeka UZOH, Belgacem HABA, Craig MITCHELL
  • Patent number: 8847380
    Abstract: A method of fabricating a semiconductor assembly can include providing a semiconductor element having a front surface, a rear surface, and a plurality of conductive pads, forming at least one hole extending at least through a respective one of the conductive pads by processing applied to the respective conductive pad from above the front surface, forming an opening extending from the rear surface at least partially through a thickness of the semiconductor element, such that the at least one hole and the opening meet at a location between the front and rear surfaces, and forming at least one conductive element exposed at the rear surface for electrical connection to an external device, the at least one conductive element extending within the at least one hole and at least into the opening, the conductive element being electrically connected with the respective conductive pad.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: September 30, 2014
    Assignee: Tessera, Inc.
    Inventors: Vage Oganesian, Belgacem Haba, Ilyas Mohammed, Craig Mitchell, Piyush Savalia
  • Patent number: 8847376
    Abstract: A microelectronic unit includes a carrier structure having a front surface, a rear surface remote from the front surface, and a recess having an opening at the front surface and an inner surface located below the front surface of the carrier structure. The microelectronic unit can include a microelectronic element having a bottom surface adjacent the inner surface, a top surface remote from the bottom surface, and a plurality of contacts at the top surface. The microelectronic element can include terminals electrically connected with the contacts of the microelectronic element. The microelectronic unit can include a dielectric region contacting at least the top surface of the microelectronic element. The dielectric region can have a planar surface located coplanar with or above the front surface of the carrier structure. The terminals can be exposed at the surface of the dielectric region for interconnection with an external element.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: September 30, 2014
    Assignee: Tessera, Inc.
    Inventors: Vage Oganesian, Belgacem Haba, Craig Mitchell, Ilyas Mohammed, Piyush Savalia
  • Patent number: 8841763
    Abstract: A microelectronic assembly can include first, second and third stacked substantially planar elements, e.g., of dielectric or semiconductor material, and which may have a CTE of less than 10 ppm/° C. The assembly may be a microelectronic package and may incorporate active semiconductor devices in one, two or more of the first, second or third elements to function cooperatively as a system-in-a-package. In one example, an electrically conductive element having at least a portion having a thickness less than 10 microns, may be formed by plating, and may electrically connect two or more of the first, second or third elements. The conductive element may entirely underlie a surface of another one of the substantially planar elements.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: September 23, 2014
    Assignee: Tessera, Inc.
    Inventors: Vage Oganesian, Belgacem Haba, Ilyas Mohammed, Piyush Savalia, Craig Mitchell