Patents by Inventor Dae-gyu Park

Dae-gyu Park has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110183486
    Abstract: A semiconductor device and a method of making the device are provided. The method can include forming a gate conductor overlying a major surface of a monocrystalline semiconductor region and forming first spacers on exposed walls of the gate conductor. Using the gate conductor and the first spacers as a mask, at least extension regions are implanted in the semiconductor region and dummy spacers are formed extending outward from the first spacers. Using the dummy spacers as a mask, the semiconductor region is etched to form recesses having at least substantially straight walls extending downward from the major surface to a bottom surface, such that a substantial angle is defined between the bottom surface and the walls. Subsequently, the process is continued by epitaxially growing regions of stressed monocrystalline semiconductor material within the recesses.
    Type: Application
    Filed: January 25, 2010
    Publication date: July 28, 2011
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, ADVANCED MICRO DEVICES, INC.
    Inventors: Kevin K. Chan, Brian J. Greene, Judson R. Holt, Jeffrey B. Johnson, Thomas S. Kanarsky, Jophy S. Koshy, Kevin McStay, Dae-Gyu Park, Johan W. Weijtmans, Frank B. Yang
  • Publication number: 20110169096
    Abstract: An integrated circuit structure includes a substrate and at least one pair of complementary transistors on or in the substrate. The pair of complementary transistors comprises a first transistor and a second transistor. The structure also includes a first stress-producing layer on the first transistor and the second transistor, and a second stress-producing layer on the first stress-producing layer over the first transistor and the second transistor. The first stress-producing layer applies tensile strain force on the first transistor and the second transistor. The second stress-producing layer applies compressive strain force on the first stress-producing layer, the first transistor, and the second transistor.
    Type: Application
    Filed: January 14, 2010
    Publication date: July 14, 2011
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, FREESCALE SEMICONDUCTOR, INC., INFINEON TECHNOLOGIES NORTH AMERICA CORP., CHARTERED SEMICONDUCTOR MANUFACTURING LTD.
    Inventors: Xiangdong Chen, Weipeng Li, Anda C. Mocuta, Dae-Gyu Park, Melanie J. Sherony, Kenneth J. Stein, Haizhou Yin, Franck Arnaud, Jin-Ping Han, Laegu Kang, Yong Meng Lee, Young Way Teh, Voon-Yew Thean, Da Zhang
  • Publication number: 20110121401
    Abstract: CMOS circuit structures are disclosed with the PFET and NFET devices having high-k dielectric layers consisting of the same gate insulator material, and metal gate layers consisting of the same gate metal material. The PFET device has a “p” interface control layer which is capable of shifting the effective-workfunction of the gate in the p-direction. In a representative embodiment of the invention the “p” interface control layer is aluminum oxide. The NFET device may have an “n” interface control layer. The materials of the “p” and “n” interface control layers are differing materials. The “p” and “n” interface control layers are positioned to the opposite sides of their corresponding high-k dielectric layers. Methods for fabricating the CMOS circuit structures with the oppositely positioned “p” and “n” interface control layers are also disclosed.
    Type: Application
    Filed: February 2, 2011
    Publication date: May 26, 2011
    Applicant: International Business Machines Corporation
    Inventors: Dae-Gyu Park, Michael P. Chudzik, Rashmi Jha, Siddarth A. Krishnan, Naim Moumen, Vijay Narayanan, Vamsi Paruchuri
  • Patent number: 7947549
    Abstract: CMOS circuit structures are disclosed with the PFET and NFET devices having high-k dielectric layers consisting of the same gate insulator material, and metal gate layers consisting of the same gate metal material. The PFET device has a “p” interface control layer which is capable of shifting the effective-workfunction of the gate in the p-direction. In a representative embodiment of the invention the “p” interface control layer is aluminum oxide. The NFET device may have an “n” interface control layer. The materials of the “p” and “n” interface control layers are differing materials. The “p” and “n” interface control layers are positioned to the opposite sides of their corresponding high-k dielectric layers. Methods for fabricating the CMOS circuit structures with the oppositely positioned “p” and “n” interface control layers are also disclosed.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: May 24, 2011
    Assignee: International Business Machines Corporation
    Inventors: Dae-Gyu Park, Michael P Chudzik, Rashmi Jha, Siddarth A Krishnan, Naim Moumen, Vijay Narayanan, Vamsi Paruchuri
  • Publication number: 20110111584
    Abstract: A planar pass gate NFET is designed with the same width as a planar pull-down NFET. To optimize a beta ratio between the planar pull-down NFET and an adjoined planar pass gate NFET, the threshold voltage of the planar pass gate NFET is increased by providing a different high-k metal gate stack to the planar pass gate NFET than to the planar pull-down NFET. Particularly, a threshold voltage adjustment dielectric layer, which is formed over a high-k dielectric layer, is preserved in the planar pass gate NFET and removed in the planar pull-down NFET. The combined NFET active area for the planar pass gate NFET and the planar pull-down NFET is substantially rectangular, which enables a high fidelity printing of the image of the combined NFET active area by lithographic means.
    Type: Application
    Filed: January 13, 2011
    Publication date: May 12, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Xiangdong Chen, Shang-Bin Ko, Dae-Gyu Park
  • Publication number: 20110089495
    Abstract: Semiconductor structures including a high k gate dielectric material that has at least one surface threshold voltage adjusting region located within 3 nm or less from an upper surface of the high k gate dielectric are provided. The at least one surface threshold voltage adjusting region is formed by a cluster beam implant step in which at least one threshold voltage adjusting impurity is formed directly within the high k gate dielectric or driven in from an overlying threshold voltage adjusting material which is subsequently removed from the structure following the cluster beam implant step.
    Type: Application
    Filed: October 20, 2009
    Publication date: April 21, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Oleg Gluschenkov, Dae-Gyu Park, Haizhou Yin
  • Patent number: 7911008
    Abstract: A planar pass gate NFET is designed with the same width as a planar pull-down NFET. To optimize a beta ratio between the planar pull-down NFET and an adjoined planar pass gate NFET, the threshold voltage of the planar pass gate NFET is increased by providing a different high-k metal gate stack to the planar pass gate NFET than to the planar pull-down NFET. Particularly, a threshold voltage adjustment dielectric layer, which is formed over a high-k dielectric layer, is preserved in the planar pass gate NFET and removed in the planar pull-down NFET. The combined NFET active area for the planar pass gate NFET and the planar pull-down NFET is substantially rectangular, which enables a high fidelity printing of the image of the combined NFET active area by lithographic means.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: March 22, 2011
    Assignee: International Business Machines Corporation
    Inventors: Xiangdong Chen, Shang-Bin Ko, Dae-Gyu Park
  • Publication number: 20110062518
    Abstract: A method of fabricating and a structure of a merged multi-fin finFET. The method includes forming single-crystal silicon fins from the silicon layer of an SOI substrate having a very thin buried oxide layer and merging the end regions of the fins by growing vertical epitaxial silicon from the substrate and horizontal epitaxial silicon from ends of the fins such that vertical epitaxial silicon growth predominates.
    Type: Application
    Filed: September 17, 2009
    Publication date: March 17, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kevin K. Chan, Thomas Safron Kanarsky, Jinghong Li, Christine Qiqing Ouyang, Dae-Gyu Park, Zhibin Ren, Xinhui Wang, Haizhou Yin
  • Patent number: 7893502
    Abstract: An epitaxial semiconductor layer may be formed in a first area reserved for p-type field effect transistors. An ion implantation mask layer is formed and patterned to provide an opening in the first area, while blocking at least a second area reserved for n-type field effect transistors. Fluorine is implanted into the opening to form an epitaxial fluorine-doped semiconductor layer and an underlying fluorine-doped semiconductor layer in the first area. A composite gate stack including a high-k gate dielectric layer and an adjustment oxide layer is formed in the first and second area. P-type and n-type field effect transistors (FET's) are formed in the first and second areas, respectively. The epitaxial fluorine-doped semiconductor layer and the underlying fluorine-doped semiconductor layer compensate for the reduction of the decrease in the threshold voltage in the p-FET by the adjustment oxide portion directly above.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: February 22, 2011
    Assignees: International Business Machines Corporation, Chartered Semiconductor Manufacturing, Ltd., Infineon Technologies AG
    Inventors: Weipeng Li, Dae-Gyu Park, Melanie J. Sherony, Jin-Ping Han, Yong Meng Lee
  • Patent number: 7872303
    Abstract: At least one gate dielectric, a gate electrode, and a gate cap dielectric are formed over at least one channel region of at least one semiconductor fin. A gate spacer is formed on the sidewalls of the gate electrode, exposing end portions of the fin on both sides of the gate electrode. The exposed portions of the semiconductor fin are vertically and laterally etched, thereby reducing the height and width of the at least one semiconductor fin in the end portions. Exposed portions of the insulator layer may also be recessed. A lattice-mismatched semiconductor material is grown on the remaining end portions of the at least one semiconductor fin by selective epitaxy with epitaxial registry with the at least one semiconductor fin. The lattice-mismatched material applies longitudinal stress along the channel of the finFET formed on the at least one semiconductor fin.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: January 18, 2011
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Qiqing Christine Ouyang, Dae-Gyu Park, Xinhui Wang
  • Patent number: 7867839
    Abstract: Disclosed are embodiments of a p-type, silicon germanium (SiGe), high-k dielectric-metal gate, metal oxide semiconductor field effect transistor (PFET) having an optimal threshold voltage (Vt), a complementary metal oxide semiconductor (CMOS) device that includes the PFET and methods of forming both the PFET alone and the CMOS device. The embodiments incorporate negatively charged ions (e.g., fluorine (F), chlorine (Cl), bromine (Br), iodine (I), etc.) into the high-k gate dielectric material of the PFET only so as to selectively adjust the negative Vt of the PFET (i.e., so as to reduce the negative Vt of the PFET).
    Type: Grant
    Filed: July 21, 2008
    Date of Patent: January 11, 2011
    Assignee: International Business Machines Corporation
    Inventors: Xiangdong Chen, Jong Ho Lee, Weipeng Li, Dae-Gyu Park, Kenneth J. Stein, Voon-Yew Thean
  • Publication number: 20110001195
    Abstract: A method for fabricating a CMOS structure is disclosed. The method includes the blanket disposition of a high-k gate insulator layer in an NFET device and in a PFET device, and the implementation of a gate metal layer over the NFET device. This is followed by a blanket disposition of an Al layer over both the NFET device and the PFET device. The method further involves a blanket disposition of a shared gate metal layer over the Al layer. When the PFET device is exposed to a thermal annealing, the high-k dielectric oxidizes the Al layer, thereby turning the Al layer into a PFET interfacial control layer, while in the NFET device the Al becomes a region of the metal gate.
    Type: Application
    Filed: September 16, 2010
    Publication date: January 6, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Dae-Gyu Park, Michael P. Chudzik, Vijay Narayanan, Vamsi Paruchuri
  • Patent number: 7863126
    Abstract: A method for fabricating a CMOS structure is disclosed. The method includes the blanket disposition of a high-k gate insulator layer in an NFET device and in a PFET device, and the implementation of a gate metal layer over the NFET device. This is followed by a blanket disposition of an Al layer over both the NFET device and the PFET device. The method further involves a blanket disposition of a shared gate metal layer over the Al layer. When the PFET device is exposed to a thermal annealing, the high-k dielectric oxidizes the Al layer, thereby turning the Al layer into a PFET interfacial control layer, while in the NFET device the Al becomes a region of the metal gate.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: January 4, 2011
    Assignee: International Business Machines Corporation
    Inventors: Dae-Gyu Park, Michael P. Chudzik, Vijay Narayanan, Vamsi Paruchuri
  • Publication number: 20100289088
    Abstract: An epitaxial semiconductor layer may be formed in a first area reserved for p-type field effect transistors. An ion implantation mask layer is formed and patterned to provide an opening in the first area, while blocking at least a second area reserved for n-type field effect transistors. Fluorine is implanted into the opening to form an epitaxial fluorine-doped semiconductor layer and an underlying fluorine-doped semiconductor layer in the first area. A composite gate stack including a high-k gate dielectric layer and an adjustment oxide layer is formed in the first and second area. P-type and n-type field effect transistors (FET's) are formed in the first and second areas, respectively. The epitaxial fluorine-doped semiconductor layer and the underlying fluorine-doped semiconductor layer compensate for the reduction of the decrease in the threshold voltage in the p-FET by the adjustment oxide portion directly above.
    Type: Application
    Filed: May 14, 2009
    Publication date: November 18, 2010
    Applicants: International Business Machines Corporation, Chartered Semiconductor Manufacturing, Ltd., Infineon Technologies North America Corp.
    Inventors: Weipeng Li, Dae-Gyu Park, Melanie J. Sherony, Jin-Ping Han, Yong Meng Lee
  • Patent number: 7683418
    Abstract: The present invention provides a method for depositing a dielectric stack comprising forming a dielectric layer atop a substrate, the dielectric layer comprising at least oxygen and silicon atoms; forming a layer of metal atoms atop the dielectric layer within a non-oxidizing atmosphere, wherein the layer of metal atoms has a thickness of less than about 15 ?; forming an oxygen diffusion barrier atop the layer of metal atoms, wherein the non-oxidizing atmosphere is maintained; forming a gate conductor atop the oxygen diffusion barrier; and annealing the layer of metal atoms and the dielectric layer, wherein the layer of metal atoms reacts with the dielectric layer to provide a continuous metal oxide layer having a dielectric constant ranging from about 25 to about 30 and a thickness less than about 15 ?.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: March 23, 2010
    Assignee: International Business Machines Corporation
    Inventors: Dae-Gyu Park, Oleg G. Gluschenkov, Michael A. Gribelyuk, Kwong Hon Wong
  • Publication number: 20100055442
    Abstract: A method of depositing a SiNxCy liner on a porous low thermal conductivity (low-k) substrate by plasma-enhanced atomic layer deposition (PE-ALD), which includes forming a SiNxCy liner on a surface of a low-k substrate having pores on a surface thereon, in which the low-k substrate is repeatedly exposed to a aminosilane-based precursor and a plasma selected from nitrogen, hydrogen, oxygen, helium, and combinations thereof until a thickness of the liner is obtained, and wherein the liner is prevented from penetrating inside the pores of a surface of the substrate. A porous low thermal conductivity substrate having a SiNxCy liner formed thereon by the method is also disclosed.
    Type: Application
    Filed: September 3, 2008
    Publication date: March 4, 2010
    Applicant: International Business Machines Corporation
    Inventors: Andrew J. Kellock, Hyungjun Kim, Dae-Gyu Park, Satyanarayana V. Nitta, Sampath Purushothaman, Stephen Rossnagel, Oscar Van Der Straten
  • Publication number: 20100044805
    Abstract: A multilayered gate stack having improved reliability (i.e., low charge trapping and gate leakage degradation) is provided. The inventive multilayered gate stack includes, from bottom to top, a metal nitrogen-containing layer located on a surface of a high-k gate dielectric and Si-containing conductor located directly on a surface of the metal nitrogen-containing layer. The improved reliability is achieved by utilizing a metal nitrogen-containing layer having a compositional ratio of metal to nitrogen of less than 1.1. The inventive gate stack can be useful as an element of a complementary metal oxide semiconductor (CMOS). The present invention also provides a method of fabricating such a gate stack in which the process conditions of a sputtering process are varied to control the ratio of metal and nitrogen within the sputter deposited layer.
    Type: Application
    Filed: October 30, 2009
    Publication date: February 25, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alessandro C. Callegari, Michael P. Chudzik, Barry P. Linder, Renee T. Mo, Vijay Narayanan, Dae-Gyu Park, Vamsi K. Paruchuri, Sufi Zafar
  • Patent number: 7666774
    Abstract: A CMOS structure and a method for fabricating the CMOS structure include a first transistor located within a first semiconductor substrate region having a first polarity. The first transistor includes a first gate electrode that includes a first metal containing material layer and a first silicon containing material layer located upon the first metal containing material layer. The CMOS structure also includes a second transistor located within a laterally separated second semiconductor substrate region having a second polarity that is different than the first polarity. The second transistor includes a second gate electrode comprising a second metal containing material layer of a composition that is different than the first metal containing material layer, and a second silicon containing material layer located upon the second metal containing material layer. The first silicon containing material layer and the first semiconductor substrate region comprise different materials.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: February 23, 2010
    Assignee: International Business Machines Corporation
    Inventors: Huilong Zhu, Dae-Gyu Park, Zhijiong Luo, Ying Zhang
  • Publication number: 20100038679
    Abstract: At least one gate dielectric, a gate electrode, and a gate cap dielectric are formed over at least one channel region of at least one semiconductor fin. A gate spacer is formed on the sidewalls of the gate electrode, exposing end portions of the fin on both sides of the gate electrode. The exposed portions of the semiconductor fin are vertically and laterally etched, thereby reducing the height and width of the at least one semiconductor fin in the end portions. Exposed portions of the insulator layer may also be recessed. A lattice-mismatched semiconductor material is grown on the remaining end portions of the at least one semiconductor fin by selective epitaxy with epitaxial registry with the at least one semiconductor fin. The lattice-mismatched material applies longitudinal stress along the channel of the finFET formed on the at least one semiconductor fin.
    Type: Application
    Filed: August 14, 2008
    Publication date: February 18, 2010
    Applicant: International Business Machines Corporation
    Inventors: KEVIN K. CHAN, Qiqing (Christine) Ouyang, Dae-Gyu Park, Xinhui Wang
  • Publication number: 20100038725
    Abstract: Ion implantation to change an effective work function for dual work function metal gate integration is presented. One method may include forming a high dielectric constant (high-k) layer over a first-type field effect transistor (FET) region and a second-type FET region; forming a metal layer having a first effective work function compatible for a first-type FET over the first-type FET region and the second-type FET region; and changing the first effective work function to a second, different effective work function over the second-type FET region by implanting a species into the metal layer over the second-type FET region.
    Type: Application
    Filed: August 12, 2008
    Publication date: February 18, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael P. Chudzik, Martin M. Frank, Herbert L. Ho, Mark J. Hurley, Rashmi Jha, Naim Moumen, Vijay Narayanan, Dae-Gyu Park, Vamsi K. Paruchuri