Patents by Inventor David E. Jones

David E. Jones has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130307616
    Abstract: Circuitry, which includes a direct current (DC)-DC converter having a first switching power supply is disclosed. The first switching power supply includes a first switching converter, an energy storage element, a first inductive element, which is coupled between the first switching converter and the energy storage element, and a first snubber circuit, which is coupled across the first inductive element. The first switching power supply receives and converts a DC power supply signal to provide a first switching power supply output signal based on a setpoint.
    Type: Application
    Filed: July 9, 2013
    Publication date: November 21, 2013
    Applicant: RF MICRO DEVICES, INC.
    Inventors: Jean-Christophe Berchtold, Chris Levesque, William David Southcombe, David E. Jones, Scott Yoder, Terry J. Stockert
  • Publication number: 20130293310
    Abstract: A direct current (DC)-DC converter, which includes a charge pump buck power supply and a buck power supply is disclosed. The charge pump buck power supply includes a charge pump buck converter, a first inductive element, and an energy storage element. The charge pump buck converter and the first inductive element are coupled in series between a DC power supply, such as a battery, and the energy storage element. The buck power supply includes a buck converter, a second inductive element, and the energy storage element. The buck converter and the second inductive element are coupled in series between the DC power supply and the energy storage element. As such, the charge pump buck power supply and the buck power supply share the energy storage element.
    Type: Application
    Filed: July 9, 2013
    Publication date: November 7, 2013
    Inventors: Chris Levesque, Jean-Christophe Berchtold, Joseph Hubert Colles, Robert Deuchars, William David Southcombe, David Zimlich, David E. Jones, Scott Yoder, Terry J. Stockert
  • Patent number: 8571492
    Abstract: A sample-and-hold (SAH) current estimating circuit and a first switching power supply are disclosed. The first switching power supply provides a first switching power supply output signal based on a series switching element and a setpoint. The SAH current estimating circuit samples a voltage across the series switching element of the first switching power supply during an ON state of the series switching element and during a ramping signal peak to provide an SAH output signal based on an estimate of an output current of the first switching power supply output signal. The first switching power supply selects the ON state of the series switching element, such that during the ramping signal peak, the series switching element has a series current having a magnitude, which is about equal to a magnitude of the output current of the first switching power supply output signal.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: October 29, 2013
    Assignee: RF Micro Devices, Inc.
    Inventors: Jean-Christophe Berchtold, Joseph Hubert Colles, David E. Jones, Chris Levesque, William David Southcombe, Scott Yoder, Terry J. Stockert
  • Patent number: 8565694
    Abstract: A split current current digital-to-analog converter (IDAC) and a radio frequency (RF) power amplifier (PA) stage are disclosed. The split current IDAC operates in a selected one of a group of DDS operating modes and provides a group of array bias signals based on the selected one of the group of DDS operating modes. Each of the group of array bias signals is a current signal. The RF PA stage includes a group of arrays of amplifying transistor elements. The RF PA stage biases at least one of the group of arrays of amplifying transistor elements based on the group of array bias signals. Further, the RF PA stage receives and amplifies an RF stage input signal to provide an RF stage output signal using at least one of the group of arrays of amplifying transistor elements that is biased.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: October 22, 2013
    Assignee: RF Micro Devices, Inc.
    Inventors: David E. Jones, Chris Levesque, William David Southcombe, Scott Yoder, Terry J. Stockert
  • Publication number: 20130271221
    Abstract: A direct current (DC)-DC converter that includes a first switching converter and a multi-stage filter is disclosed. The multi-stage filter includes at least a first inductance (L) capacitance (C) filter and a second LC filter coupled in series between the first switching converter and a DC-DC converter output. The first LC filter has a first LC time constant and the second LC filter has a second LC time constant, which is less than the first LC time constant. The first switching converter and the multi-stage filter form a feedback loop, which is used to regulate the first switching power supply output signal based on the setpoint. The first LC filter includes a first capacitive element having a first self-resonant frequency, which is about equal to a first notch frequency of the multi-stage filter.
    Type: Application
    Filed: June 6, 2013
    Publication date: October 17, 2013
    Inventors: Chris Levesque, William David Southcombe, David E. Jones, Scott Yoder, Terry J. Stockert
  • Publication number: 20130271224
    Abstract: A radio frequency (RF) switch semiconductor die and an RF supporting structure are disclosed. The RF switch semiconductor die is attached to the RF supporting structure. The RF switch semiconductor die has a first edge and a second edge, which may be opposite from the first edge. The RF supporting structure has a group of alpha supporting structure connection nodes, which is adjacent to the first edge; a group of beta supporting structure connection nodes, which is adjacent to the second edge; and an alpha AC grounding supporting structure connection node, which is adjacent to the second edge. When the group of alpha supporting structure connection nodes and the alpha AC grounding supporting structure connection node are active, the group of beta supporting structure connection nodes are inactive.
    Type: Application
    Filed: June 6, 2013
    Publication date: October 17, 2013
    Inventors: Anthony Puliafico, David E. Jones, Paul D. Jones, Chris Levesque, William David Southcombe, Scott Yoder, Terry J. Stockert
  • Patent number: 8559898
    Abstract: A radio frequency (RF) power amplifier (PA) amplifying transistor of an RF PA stage and an RF PA temperature compensating bias transistor of the RF PA stage are disclosed. The RF PA amplifying transistor includes a first array of amplifying transistor elements and a second array of amplifying transistor elements. The RF PA temperature compensating bias transistor provides temperature compensation of bias of the RF PA amplifying transistor. Further, the RF PA temperature compensating bias transistor is located between the first array and the second array. As such, the RF PA temperature compensating bias transistor is thermally coupled to the first array and the second array. The RF PA stage receives and amplifies an RF stage input signal to provide an RF stage output signal using the RF PA amplifying transistor.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: October 15, 2013
    Assignee: RF Micro Devices, Inc.
    Inventors: David E. Jones, Chris Levesque, William David Southcombe, Scott Yoder, Terry J. Stockert
  • Patent number: 8542061
    Abstract: The present disclosure relates to a direct current (DC)-DC converter, which includes a charge pump based radio frequency (RF) power amplifier (PA) envelope power supply and a charge pump based PA bias power supply. The DC-DC converter is coupled between RF PA circuitry and a DC power supply, such as a battery. As such, the PA envelope power supply provides an envelope power supply signal to the RF PA circuitry and the PA bias power supply provides a bias power supply signal to the RF PA circuitry. Both the PA envelope power supply and the PA bias power supply receive power via a DC power supply signal from the DC power supply. The PA envelope power supply includes a charge pump buck converter and the PA bias power supply includes a charge pump.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: September 24, 2013
    Assignee: RF Micro Devices, Inc.
    Inventors: Chris Levesque, William David Southcombe, David E. Jones, Scott Yoder, Terry J. Stockert
  • Patent number: 8489048
    Abstract: Power amplifier (PA) control circuitry and PA bias circuitry are disclosed. During one slot of a multislot transmit burst from radio frequency (RF) PA circuitry, the PA control circuitry selects one PA bias level of the RF PA circuitry and the RF PA circuitry has one output power level. The RF PA circuitry has a next output power level during an adjacent next slot of the multislot transmit burst. If the one output power level exceeds the next output power level by more than a power drop limit, then the PA control circuitry maintains the one PA bias level during the adjacent next slot. If the one output power level significantly exceeds the next output power level, but by less than the power drop limit, then the PA control circuitry selects a next PA bias level, which is less than the one PA bias level, during the adjacent next slot.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: July 16, 2013
    Assignee: RF Micro Devices, Inc.
    Inventors: Roman Zbigniew Arkiszewski, Brian Baxter, Stuart Williams, Hirofumi Honjo, William David Southcombe, David E. Jones, Chris Levesque, Scott Yoder, Terry J. Stockert
  • Patent number: 8394608
    Abstract: Devices, containers, and methods are provided for performing biological analysis in a closed environment. Illustrative biological analysis include nucleic acid amplification and detection and immuno-PCR.
    Type: Grant
    Filed: May 8, 2006
    Date of Patent: March 12, 2013
    Assignee: BioFire Diagnostics, Inc.
    Inventors: Kirk M. Ririe, Michael R. Newswander, Randy P. Rasmussen, Mark Aaron Poritz, Stewart Benjamin Smith, David E. Jones, Gary Clark Kessler
  • Publication number: 20120299647
    Abstract: A power amplifier (PA) envelope power supply, which provides an envelope power supply signal to radio frequency (RF) PA circuitry, and a process to prevent undershoot of the PA envelope power supply is disclosed. The process includes determining if an envelope control signal to the PA envelope power supply has a step change from a high magnitude to a low magnitude that exceeds a step change limit. Such a step change may cause undershoot of the PA envelope power supply. As such, if the step change exceeds the step change limit, the envelope control signal is modified to use an intermediate magnitude for period of time. Otherwise, if the step change does not exceed the step change limit, the envelope control signal is not modified.
    Type: Application
    Filed: November 28, 2011
    Publication date: November 29, 2012
    Applicant: RF MICRO DEVICES, INC.
    Inventors: Hirofumi Honjo, Brian Baxter, Stuart Williams, Roman Zbigniew Arkiszewski, David E. Jones, Chris Levesque, William David Southcombe, Scott Yoder, Terry J. Stockert
  • Publication number: 20120299646
    Abstract: A power amplifier (PA) envelope power supply and a process to select a converter operating mode of the PA envelope power supply are disclosed. The PA envelope power supply operates in one of a first converter operating mode and a second converter operating mode. The process for selecting the converter operating mode is based on a selected communications mode of a radio frequency (RF) communications system, a target output power from RF PA circuitry of the RF communications system, and a direct current (DC) power supply voltage.
    Type: Application
    Filed: November 28, 2011
    Publication date: November 29, 2012
    Applicant: RF MICRO DEVICES, INC.
    Inventors: William David Southcombe, Jason Millard, Chris Levesque, Brian Baxter, Roman Zbigniew Arkiszewski, David E. Jones, Scott Yoder, Terry J. Stockert
  • Publication number: 20120299661
    Abstract: A charge pump of a power amplifier (PA) bias power supply and a process to prevent undershoot disruption of a bias power supply signal of the PA bias power supply are disclosed. The charge pump operates in one of multiple bias supply pump operating modes, which include at least a bias supply pump-up operating mode and a bias supply bypass operating mode. The process prevents selection of the bias supply pump-up operating mode from the bias supply bypass operating mode before charge pump circuitry in the charge pump is capable of providing adequate voltage to prevent undershoot disruption of the bias power supply signal.
    Type: Application
    Filed: November 29, 2011
    Publication date: November 29, 2012
    Applicant: RF MICRO DEVICES, INC.
    Inventors: Stuart Williams, Brian Baxter, Brad Hunkele, Hirofumi Honjo, Roman Zbigniew Arkiszewski, David E. Jones, Chris Levesque, William David Southcombe, Scott Yoder, Terry J. Stockert
  • Publication number: 20120299660
    Abstract: Power amplifier (PA) control circuitry and PA bias circuitry are disclosed. During one slot of a multislot transmit burst from radio frequency (RF) PA circuitry, the PA control circuitry selects one PA bias level of the RF PA circuitry and the RF PA circuitry has one output power level. The RF PA circuitry has a next output power level during an adjacent next slot of the multislot transmit burst. If the one output power level exceeds the next output power level by more than a power drop limit, then the PA control circuitry maintains the one PA bias level during the adjacent next slot. If the one output power level significantly exceeds the next output power level, but by less than the power drop limit, then the PA control circuitry selects a next PA bias level, which is less than the one PA bias level, during the adjacent next slot.
    Type: Application
    Filed: November 28, 2011
    Publication date: November 29, 2012
    Applicant: RF MICRO DEVICES, INC.
    Inventors: Roman Zbigniew Arkiszewski, Brian Baxter, Stuart Williams, Hirofumi Honjo, William David Southcombe, David E. Jones, Chris Levesque, Scott Yoder, Terry J. Stockert
  • Publication number: 20120299645
    Abstract: A direct current (DC)-DC converter and radio frequency (RF) power amplifier (PA) circuitry are disclosed. The DC-DC converter provides an envelope power supply signal to the RF PA circuitry based on a first power supply output control signal. As a temperature of the RF PA circuitry changes, the envelope power supply signal may need to be adjusted to meet temperature compensation requirements of the RF PA circuitry. With adequate thermal coupling between the DC-DC converter and the RF PA circuitry, adjustments to the envelope power supply signal may be based on temperature measurements of the DC-DC converter. A desired correction of the first power supply output control signal is determined based on a measured temperature of the DC-DC converter and the temperature compensation requirements of the RF PA circuitry. The first power supply output control signal is adjusted based on the desired correction.
    Type: Application
    Filed: November 28, 2011
    Publication date: November 29, 2012
    Applicant: RF MICRO DEVICES, INC.
    Inventors: William David Southcombe, Brian Baxter, David E. Jones, Chris Levesque, Scott Yoder, Terry J. Stockert
  • Publication number: 20120302186
    Abstract: A radio frequency (RF) communications system, which includes power amplifier (PA) control circuitry and PA bias circuitry, is disclosed. The PA control circuitry identifies a selected communications mode of the RF communications system and a target output power from RF PA circuitry. The PA control circuitry selects a PA bias level of a driver stage of the RF PA circuitry and a PA bias level of a final stage of the RF PA circuitry based on the selected communications mode and the target output power. The PA bias circuitry establishes a PA bias level for the driver stage and a PA bias level for the final stage based on the selected PA bias levels of the driver stage and the final stage, respectively.
    Type: Application
    Filed: November 28, 2011
    Publication date: November 29, 2012
    Applicant: RF MICRO DEVICES, INC.
    Inventors: David E. Jones, William David Southcombe, Brian Baxter, Roman Zbigniew Arkiszewski, Chris Levesque, Scott Yoder, Terry J. Stockert
  • Patent number: 8315576
    Abstract: A cascaded directional couplers circuit having capacitive compensation such that the directivity of a resistively terminated one of the cascaded couplers is not degraded by an inductance of the other one of the cascaded directional couplers.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: November 20, 2012
    Assignee: RF Micro Devices, Inc.
    Inventor: David E. Jones
  • Publication number: 20120280746
    Abstract: A direct current (DC)-DC converter having a DC-DC converter semiconductor die and an alpha flying capacitive element is disclosed. The DC-DC converter semiconductor die includes a first series alpha switching element, a second series alpha switching element, a first alpha flying capacitor connection node, which is about over the second series alpha switching element, and a second alpha flying capacitor connection node, which is about over the first series alpha switching element. The alpha flying capacitive element is electrically coupled between the first alpha flying capacitor connection node and the second alpha flying capacitor connection node. By locating the first alpha flying capacitor connection node and the second alpha flying capacitor connection node about over the second series alpha switching element and the first series alpha switching element, respectively, lengths of transient current paths may be minimized, thereby reducing noise and potential interference.
    Type: Application
    Filed: November 2, 2011
    Publication date: November 8, 2012
    Applicant: RF MICRO DEVICES, INC.
    Inventors: Robert Deuchars, Jean-Christophe Berchtold, Joseph Hubert Colles, David Zimlich, Chris Levesque, William David Southcombe, David E. Jones, Scott Yoder, Terry J. Stockert
  • Publication number: 20120280747
    Abstract: At least a first shunt switching element and switching control circuitry of a first switching power supply are disclosed. At least the first shunt switching element is coupled between a ground and an output inductance node of the first switching power supply. The first switching power supply provides a buck output signal from the output inductance node. The switching control circuitry selects one of an ON state and an OFF state of the first shunt switching element. When the buck output signal is above a first threshold, the switching control circuitry is inhibited from selecting the ON state. The first switching power supply provides a first switching power supply output signal based on the buck output signal. By using feedback based on the buck output signal, the switching control circuitry may refine the timing of switching between series switching elements and shunt switching elements to increase efficiency.
    Type: Application
    Filed: November 2, 2011
    Publication date: November 8, 2012
    Applicant: RF MICRO DEVICES, INC.
    Inventors: David Zimlich, Jean-Christophe Berchtold, Joseph Hubert Colles, David E. Jones, Chris Levesque, William David Southcombe, Scott Yoder, Terry J. Stockert
  • Patent number: RE44697
    Abstract: An encryption chip is programmable to process a variety of secret key and public key encryption algorithms. The chip includes a pipeline of processing elements, each of which can process a round within a secret key algorithm. Data is transferred between the processing elements through dual port memories. A central processing unit allows for processing of very wide data words from global memory in single cycle operations. An adder circuit is simplified by using plural relatively small adder circuits with sums and carries looped back in plural cycles. Multiplier circuitry can be shared between the processing elements and the central processor by adapting the smaller processing element multipliers for concatenation as a very wide central processor multiplier.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: January 7, 2014
    Assignee: Mosaid Technologies Incorporated
    Inventors: David E. Jones, Cormac M. O'Connell