Patents by Inventor David L. Kaplan

David L. Kaplan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170218339
    Abstract: The present invention provides, among other things, methods for producing platelets including the steps of providing a silk membrane about 2 ?m and 100 ?m thick, inclusive, contacting the silk membrane with a porogen to form a porous silk membrane comprising at least one silk wall defining a lumen, associating the porous silk membrane with stromal derived factor-1? and at least one functionalizing agent, forming a three dimensional silk matrix comprising interconnected pores wherein the pores have a diameter of between about 5 and 500 ?m, inclusive, wherein the silk matrix is formed around at least a portion of the porous silk membrane, introducing a plurality of megakaryocytes to the silk matrix such that the megakaryocytes are located at least partially within the porous silk matrix, and stimulating the plurality of megakaryocytes to produce platelets. Also provided are various new compositions and methods of making those compositions.
    Type: Application
    Filed: August 6, 2015
    Publication date: August 3, 2017
    Inventors: Alessandra Balduini, David L. Kaplan, Lindsay Wray, Christian Andrea Di Buduo, Lorenzo Tozzi, Ying Chen
  • Patent number: 9694082
    Abstract: This invention provides for compositions, methods and devices for rapidly converting silk fibroin solution into a silk fibroin gel using direct application of voltage, in a process called electrogelation. The silk fibroin gel may be reversibly converted back to liquid form by applying reverse voltage or may be converted further to ?-sheet structure by applying shear force or other treatments. The electrogelated silk may be used as an extracted bulk gel, spray or stream of gel for processing into materials or devices, or may be used as silk gel coating to devices. Active agents may be embedded in the silk gel for various medical applications. This invention also provides for methods and compositions for preparing adhesive silk pH-gels. For example, the method comprises reducing pH level of a silk fibroin solution to increase the bulk or local proton concentration of the silk fibroin solution, thereby forming adhesive silk gels.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: July 4, 2017
    Assignee: Trustees of Tufts College
    Inventors: David L. Kaplan, Tuna Yucel, Tim Jia-Ching Lo, Gary G. Leisk
  • Publication number: 20170173161
    Abstract: Embodiments of various aspects described herein are directed to silk-based compositions for ocular delivery of at least one active agent, e.g., at least one therapeutic agent and methods of using the same. In some embodiments, the silk-based compositions can provide sustained release of at least one therapeutic agent to at least a portion of an eye. Thus, some embodiments of the silk-based compositions can be used for treatment of an ocular condition, e.g., age-related macular degeneration.
    Type: Application
    Filed: September 28, 2016
    Publication date: June 22, 2017
    Applicants: Trustees of Tufts College, Trustees of Tufts College
    Inventors: David L. Kaplan, Michael L. Lovett, Tuna Yucel, Xiaoqin Wang
  • Patent number: 9674771
    Abstract: Systems and methods for power aggregation are described. One method includes charging an electric resource or vehicle over a power connection to an electric network, obtaining, with a processor, a unique identifier of a device associated with the electric resource or vehicle at the power connection, and determining, with the processor, a location of the electric resource or vehicle from the unique identifier.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: June 6, 2017
    Assignee: V2Green, Inc.
    Inventors: Seth W. Bridges, Seth B. Pollack, David L. Kaplan
  • Patent number: 9655993
    Abstract: This invention relates to a lamellae tissue layer, comprising a grooved silk fibroin substrate comprising tissue-specific cells. The silk fibroin substrates provides an excellent means of controlling and culturing cell and extracellular matrix development. A multitude of lamellae tissue layers can be used to create a tissue-engineered organ, such as a tissue-engineered cornea. The tissue-engineered organ is non-immunogenic and biocompatible.
    Type: Grant
    Filed: July 7, 2015
    Date of Patent: May 23, 2017
    Assignee: Trustees of Tufts College
    Inventors: David L. Kaplan, Fiorenzo Omenetto, Jeffrey K. Marchant, Noorjahan Panjwani, Brian Lawrence
  • Patent number: 9623147
    Abstract: The present invention provides for concentrated aqueous silk fibroin solutions and an all-aqueous mode for preparation of concentrated aqueous fibroin solutions that avoids the use of organic solvents, direct additives, or harsh chemicals. The invention further provides for the use of these solutions in production of materials, e.g., fibers, films, foams, meshes, scaffolds and hydrogels.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: April 18, 2017
    Assignee: Trustees of Tufts College
    Inventors: David L. Kaplan, Ung-Jin Kim, Jaehyung Park, Hyoung-Joon Jin
  • Patent number: 9603810
    Abstract: The present invention provides for photonic nanoimprinted silk fibroin-based materials and methods for making same, comprising embossing silk fibroin-based films with photonic nanometer scale patterns. In addition, the invention provides for processes by which the silk fibroin-based films can be nanoimprinted at room temperature, by locally decreasing the glass transition temperature of the silk film. Such nanoimprinting process increases high throughput and improves potential for incorporation of silk-based photonics into biomedical and other optical devices.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: March 28, 2017
    Assignee: TUFTS UNIVERSITY
    Inventors: Jason J. Amsden, David L. Kaplan, Fiorenzo G. Omenetto
  • Patent number: 9603971
    Abstract: Disclosed herein are pH-dependent silk fibroin-based ionomeric compositions and colloids, and methods of making the same. The state of the silk fibroin ionomeric compositions is reversible and can transform from a gel-like colloid to a more fluid-like solution, or vice versa, upon an environmental stimulus, e.g., pH. Thus, the silk-based ionomeric compositions and colloids can be applied in various industries, ranging from electronic applications to biomedical applications, such as sensors, gel diodes, absorbent materials, drug delivery systems, tissue implants and contrast agents.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: March 28, 2017
    Assignee: Trustees of Tufts College
    Inventors: David L. Kaplan, Monica A. Serban
  • Patent number: 9599891
    Abstract: A method of manufacturing a nanopatterned biophotonic structure includes forming a customized nanopattern mask on a substrate using E-beam lithography, providing a biopolymer matrix solution, depositing the biopolymer matrix solution on the substrate, and drying the biopolymer matrix solution to form a solidified biopolymer film. A surface of the film is formed with the nanopattern mask, or a nanopattern is machined directly on a surface of the film using E-beam lithograpy such that the biopolymer film exhibits a spectral signature corresponding to the E-beam lithograpy nanopattern. The resulting bio-compatible nanopatterned biophotonic structures may be made from silk, may be biodegradable, and may be bio-sensing devices. The biophotonic structures may employ nanopatterned masks based on non-periodic photonic lattices, and the biophotonic structures may be designed with specific spectral signatures for use in probing biological substances, including displaying optical activity in the form of opalescence.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: March 21, 2017
    Assignees: TRUSTEES OF TUFTS COLLEGE, TRUSTEES OF BOSTON UNIVERSITY
    Inventors: David L. Kaplan, Fiorenzo G. Omenetto, Luca Dal Negro
  • Patent number: 9585830
    Abstract: A formulation for a stable ascorbic acid composition which, in a simplified form, is comprised of ascorbic acid in solution with a hygroscopic compound (i.e., a substance with the ability to attract water molecules from the surrounding environment through either absorption or adsorption). Also disclosed herein are methods for the production of such compounds and methods of using such compounds in the prevention, inhibition and treatment of striae gravidarum, radiation dermatitis, rhytids, lentigoes, dyschromia, sun-damage induced hyperpigmentation, cellulite, scars and purpura, among other skin diseases or conditions.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: March 7, 2017
    Inventor: David L. Kaplan
  • Patent number: 9579274
    Abstract: A formulation for a stable ascorbic acid composition which, in a simplified form, is comprised of ascorbic acid in solution with a hygroscopic compound (i.e., a substance with the ability to attract water molecules from the surrounding environment through either absorption or adsorption). Also disclosed herein are methods for the production of such compounds and methods of using such compounds in the prevention, inhibition and treatment of striae gravidarum, radiation dermatitis, rhytids, lentigoes, dyschromia, sun-damage induced hyperpigmentation, cellulite, scars and purpura, among other skin diseases or conditions.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: February 28, 2017
    Inventor: David L. Kaplan
  • Patent number: 9566365
    Abstract: This invention relates to methods and compositions for preparation of silk-PEGs based biomaterials through crosslinking by chemically reacting active polyethylene glycols (PEGs) possessing different chemical groups (e.g., thiols and maleimides functionalized PEGs) that are additionally stabilized by the beta-sheet formation of silk fibroin. The crosslinked silk-PEGs biomaterials present strong adhesive properties, which are comparable to or better than the current leading PEG-based sealant, depending on the silk concentration in the silk-PEGs biomaterials. In addition, the silk-PEGs based biomaterials are cytocompatible, show decreased swelling behavior and longer degradation times, which make them suitable for hemostatic applications where the current available tissue sealant products can be contraindicated.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: February 14, 2017
    Assignee: Trustees of Tufts College
    Inventors: David L. Kaplan, Monica A. Serban
  • Publication number: 20170027879
    Abstract: The inventions provided herein relate to silk-based scaffolds and methods of producing the same, which can be used for a range of tissue engineering applications. The fabrication methods described herein provide a versatile platform to incorporate hollow conduits (e.g., for nutrient/oxygen delivery) through three-dimensional silk-based scaffolds that have tunable bulk properties (e.g., but not limited to, porosity, mechanical, degradation rate) and allow endothelialization and/or cell compartmentalization, for engineering a variety of complex tissue equivalents.
    Type: Application
    Filed: February 29, 2016
    Publication date: February 2, 2017
    Inventors: Lindsay Wray, Jelena Rnjak-Kovacina, David L. Kaplan
  • Patent number: 9554989
    Abstract: The present invention is directed to silk-based drug delivery compositions for controlled, sustained delivery of therapeutic agent(s) as well as methods of making and using the same.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: January 31, 2017
    Assignee: Trustees of Tufts College
    Inventors: David L. Kaplan, Tuna Yucel, Michael L. Lovett, Xiaoqin Wang
  • Publication number: 20170007738
    Abstract: The inventions provided herein relate to compositions, methods, delivery devices and kits for repairing or augmenting a tissue in a subject. The compositions described herein can be injectable such that they can be placed in a tissue to be treated with a minimally-invasive procedure (e.g., by injection). In some embodiments, the composition described herein comprises a compressed silk fibroin matrix, which can expand upon injection into the tissue and retain its original expanded volume within the tissue for a period of time. The compositions can be used as a filler to replace a tissue void, e.g., for tissue repair and/or augmentation, or as a scaffold to support tissue regeneration and/or reconstruction. In some embodiments, the compositions described herein can be used for soft tissue repair or augmentation.
    Type: Application
    Filed: September 22, 2016
    Publication date: January 12, 2017
    Inventors: Gary G. Leisk, Tim Jia-Ching Lo, Lei Li, Evangelia Bellas, David L. Kaplan
  • Patent number: 9539362
    Abstract: The present invention is directed to a method for forming an inorganic coating on a protein template. The method comprises contacting the template with an anionic polymer interface followed by an inorganic material for a sufficient period of time to allow mineralization of the inorganic material thus forming an inorganic coating on the template. Preferably, the coating is aligned.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: January 10, 2017
    Assignee: Trustees of Tufts College
    Inventors: David L. Kaplan, Chunmei Li
  • Patent number: 9537318
    Abstract: An energy storage system includes modular energy storage equipment that may be connected to an external system, such as a power grid. In at least one embodiment, the energy storage system includes a power transfer control system comprising a power transfer network and a processing module or controller. The power transfer network has a first interface coupleable to one or more energy storage units and a second interface coupleable to one or more power conversion units. One or more conductors in the power transfer network are selectively coupleable to the first interface and the second interface for transferring power between the energy storage units and the power conversion units based at least in part on information indicating a power or energy supply or demand of an external system or information indicating an amount of energy stored in the energy storage units. The energy storage system is scalable for different implementations.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: January 3, 2017
    Assignee: Doosan GridTech, Inc.
    Inventors: David L. Kaplan, Joshua I. Kaplan, Gregory P. Darlington
  • Publication number: 20160376331
    Abstract: A method of manufacturing a biopolymer optical device includes providing a polymer, providing a substrate, casting the polymer on the substrate, and enzymatically polymerizing an organic compound to generate a conducting polymer between the provided polymer and the substrate. The polymer may be a biopolymer such as silk and may be modified using organic compounds such as tyrosines to provide a molecular-level interface between the provided bulk biopolymer of the biopolymer optical device and a substrate or other conducting layer via a tyrosine-enzyme polymerization. The enzymatically polymerizing may include catalyzing the organic compound with peroxidase enzyme reactions. The result is a carbon-carbon conjugated backbone that provides polymeric “wires” for use in polymer and biopolymer optical devices. An all organic biopolymer electroactive material is thereby provided that provides optical functions and features.
    Type: Application
    Filed: February 18, 2016
    Publication date: December 29, 2016
    Inventors: David L. KAPLAN, Fiorenzo OMENETTO, Brian LAWRENCE, Mark CRONIN-GOLOMB
  • Patent number: 9517357
    Abstract: Provided herein are silk fibroin-based photothermal elements and uses thereof. The silk fibroin-based photothermal elements comprise a plurality of plasmonic nanoparticle distributed in a silk fibroin matrix, and can generate heat when the plasmonic nanoparticles are exposed to electromagnetic radiation. The silk fibroin-based photothermal elements can be adapted to be conformable and biodegradable, and can further be integrated with various electronic components, such as a thermo-electric device for conversion of heat into electricity. The invention is useful for various in vivo applications, such as photothermal therapy, controlled drug-delivery devices or wireless powering of implanted micro-devices.
    Type: Grant
    Filed: September 3, 2011
    Date of Patent: December 13, 2016
    Assignee: TUFTS UNIVERSITY
    Inventors: Fiorenzo Omenetto, David L. Kaplan, Hu Tao
  • Patent number: 9513405
    Abstract: A method of manufacturing a biopolymer photonic crystal includes providing a biopolymer, processing the biopolymer to yield a biopolymer matrix solution, providing a substrate, casting the matrix solution on the substrate, and drying the biopolymer matrix solution to form a solidified biopolymer film. A surface of the film is formed with a nanopattern, or a nanopattern is machined on a surface of the film. In another embodiment, a plurality of biopolymer films is stacked together. A photonic crystal is also provided that is made of a biopolymer and has a nanopatterned surface. In another embodiment, the photonic crystal includes a plurality of nanopatterned films that are stacked together.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: December 6, 2016
    Assignee: TUFTS UNIVERSITY
    Inventors: David L. Kaplan, Fiorenzo Omenetto, Brian Lawrence, Mark Cronin-Golomb