Patents by Inventor David P. Paulsen

David P. Paulsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9093421
    Abstract: A method and circuit for implementing field effect transistors (FETs) having a gate within a gate utilizing a replacement metal gate process (RMGP), and a design structure on which the subject circuit resides are provided. A field effect transistor utilizing a RMGP includes a sacrificial gate in a generally central metal gate region on a dielectric layer on a substrate, a source and drain formed in the substrate, a pair of dielectric spacers, a first metal gate and a second metal gate replacing the sacrificial gate inside the central metal gate region, and a second gate dielectric layer separating the first metal gate and the second metal gate. A respective electrical contact is formed on opposite sides of the central metal gate region for respectively electrically connecting the first metal gate and the second metal gate to a respective voltage.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: July 28, 2015
    Assignee: International Business Machines Corporation
    Inventors: Karl L. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Patent number: 9093451
    Abstract: A multiple-patterned semiconductor device and a method of manufacture are provided. The semiconductor device includes one or more layers with signal tracks. The signal tracks have a quality characteristic. The semiconductor device also includes repeater banks to repower signals. The method of manufacture includes defining portions of layers with photomasks having signal track patterns, determining a quality characteristic of the signal track patterns, and selecting a photomask for etching vias.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: July 28, 2015
    Assignee: International Business Machines Corporation
    Inventors: David H. Allen, Douglas M. Dewanz, David P. Paulsen, John E. Sheets, II
  • Publication number: 20150206878
    Abstract: A method and circuit for implementing an enhanced transistor topology enabling enhanced current capability with added device drive strength with buried field effect transistors (FETs) below and beside a traditional FinFET on a bulk substrate, and a design structure on which the subject circuit resides are provided. Buried field effect transistors (FETs) are formed on either side and under the traditional FinFET. The gate of the FinFET becomes the gate of the parallel buried (FETs) and allows self alignment to the underlying sources and drains of the buried FET devices in the bulk semiconductor.
    Type: Application
    Filed: March 28, 2015
    Publication date: July 23, 2015
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Patent number: 9087879
    Abstract: A multiple-patterned semiconductor device and a method of manufacture are provided. The semiconductor device includes a conductive layer. The conductive layer includes conductive tracks which may be defined by photomasks. The conductive tracks may have quality characteristics. Distinct quality characteristics of distinct conductive tracks may be compared. Based on the comparison, signals and supply voltage may be routed on particular conductive tracks.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: July 21, 2015
    Assignee: International Business Machines Corporation
    Inventors: David H. Allen, Douglas M. Dewanz, David P. Paulsen, John E. Sheets, II
  • Patent number: 9082624
    Abstract: A multiple-patterned semiconductor device is provided. The semiconductor device includes one or more layers with signal tracks defined by masks and a structure for transferring a signal between signal tracks and repowering the signal.
    Type: Grant
    Filed: January 2, 2013
    Date of Patent: July 14, 2015
    Assignee: International Business Machines Corporation
    Inventors: David H. Allen, Douglas M. Dewanz, David P. Paulsen, John E. Sheets, II
  • Patent number: 9076848
    Abstract: A semiconductor device and a method of manufacture are provided. The semiconductor device includes one or more layers having channels adapted to carry signals or deliver power. The semiconductor device may include at least two channels having a substantially equivalent cross-sectional area. Conductors in separate channels may have different cross-sectional areas. A spacer dielectric on a side of a channel may be included. The method of manufacture includes establishing a signal conductor layer including a first channel and a second channel having a substantially equivalent cross-sectional area, introducing a spacer dielectric on a side of the second channel, introducing a first conductor in the first channel having a first cross-sectional area, and introducing a second conductor in the second channel having a second cross-sectional area where the second cross-sectional area is smaller than the first cross-sectional area.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: July 7, 2015
    Assignee: International Business Machines Corporation
    Inventors: David H. Allen, Douglas M Dewanz, David P. Paulsen, John E. Sheets, II, Kelly L. Williams
  • Patent number: 9070751
    Abstract: A semiconductor device and a method of manufacture are provided. The semiconductor device includes one or more layers having channels adapted to carry signals or deliver power. The semiconductor device may include at least two channels having a substantially equivalent cross-sectional area. Conductors in separate channels may have different cross-sectional areas. A spacer dielectric on a side of a channel may be included. The method of manufacture includes establishing a signal conductor layer including a first channel and a second channel having a substantially equivalent cross-sectional area, introducing a spacer dielectric on a side of the second channel, introducing a first conductor in the first channel having a first cross-sectional area, and introducing a second conductor in the second channel having a second cross-sectional area where the second cross-sectional area is smaller than the first cross-sectional area.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: June 30, 2015
    Assignee: International Business Machines Corporation
    Inventors: David H. Allen, Douglas M Dewanz, David P. Paulsen, John E. Sheets, II, Kelly L. Williams
  • Patent number: 9059020
    Abstract: A method and circuit for implementing an enhanced transistor topology enabling enhanced current capability with added device drive strength with buried field effect transistors (FETs) below and beside a traditional FinFET on a bulk substrate, and a design structure on which the subject circuit resides are provided. Buried field effect transistors (FETs) are formed on either side and under the traditional FinFET. The gate of the FinFET becomes the gate of the parallel buried (FETs) and allows self alignment to the underlying sources and drains of the buried FET devices in the bulk semiconductor.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: June 16, 2015
    Assignee: International Business Machins Corporation
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Patent number: 9059307
    Abstract: A method and circuit for implementing an enhanced transistor topology enabling enhanced current capability with added device drive strength with buried field effect transistors (FETs) below and beside a traditional FinFET on a bulk substrate, and a design structure on which the subject circuit resides are provided. Buried field effect transistors (FETs) are formed on either side and under the traditional FinFET. The gate of the FinFET becomes the gate of the parallel buried (FETs) and allows self alignment to the underlying sources and drains of the buried FET devices in the bulk semiconductor.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: June 16, 2015
    Assignee: International Business Machines Corporation
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Publication number: 20150162266
    Abstract: A semiconductor chip includes a substrate having a frontside and a backside coupled to a ground. The chip includes a circuit in the substrate at the frontside. A through silicon via (TSV) having a front-end, a back-end, and a lateral surface is included. The back-end and lateral surface of the TSV are in the substrate, and the front-end of the TSV is substantially parallel to the frontside of the substrate. The chip also includes an antifuse material deposited between the back-end and lateral surface of the TSV and the substrate. The antifuse material insulates the TSV from the substrate. The chip includes a ground layer insulated from the substrate and coupled with the TSV and the circuit. The ground layer conducts a program voltage to the TSV to cause a portion of the antifuse material to migrate away from the TSV, thereby connecting the circuit to the ground.
    Type: Application
    Filed: February 10, 2015
    Publication date: June 11, 2015
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Publication number: 20150155206
    Abstract: A method and circuit for implementing an enhanced transistor topology enabling enhanced current capability with added device drive strength with buried field effect transistors (FETs) below and beside a traditional FinFET on a bulk substrate, and a design structure on which the subject circuit resides are provided. Buried field effect transistors (FETs) are formed on either side and under the traditional FinFET. The gate of the FinFET becomes the gate of the parallel buried (FETs) and allows self alignment to the underlying sources and drains of the buried FET devices in the bulk semiconductor.
    Type: Application
    Filed: May 28, 2014
    Publication date: June 4, 2015
    Applicant: International Business Machines Corporation
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Publication number: 20150155280
    Abstract: A method and circuit for implementing an enhanced transistor topology enabling enhanced current capability with added device drive strength with buried field effect transistors (FETs) below and beside a traditional FinFET on a bulk substrate, and a design structure on which the subject circuit resides are provided. Buried field effect transistors (FETs) are formed on either side and under the traditional FinFET. The gate of the FinFET becomes the gate of the parallel buried (FETs) and allows self alignment to the underlying sources and drains of the buried FET devices in the bulk semiconductor.
    Type: Application
    Filed: December 2, 2013
    Publication date: June 4, 2015
    Applicant: International Business Machines Corporation
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Patent number: 9048123
    Abstract: A semiconductor device includes a first fin rising out of a semiconductor base. It further includes a second fin rising out of the semiconductor base. The second fin is substantially parallel to the first fin that forms a span between the first fin and the second fin. A first dielectric layer is deposited on exposed surfaces of a first gate body area of the first fin, a second gate body area of the second fin, and an adjacent surface of the semiconductor base that defines the span between the first and second gate body areas. A gate electrode layer is sandwiched between the first dielectric layer and a second dielectric layer. The semiconductor device includes a third fin interdigitated between the first fin and the second fin within the span. Exposed surfaces of the gate body area of the third fin are in contact with the second dielectric layer.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: June 2, 2015
    Assignee: International Business Machines Corporation
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Publication number: 20150145047
    Abstract: A method and circuit for implementing an enhanced transistor topology with a buried field effect transistor (FET) utilizing the drain of a FinFET as the gate of the new buried FET and a design structure on which the subject circuit resides are provided. A drain area of the fin area of a FinFET over a buried dielectric layer provides both the drain of the FinFET as well as the gate node of a second field effect transistor. This second field effect transistor is buried in the carrier semiconductor substrate under the buried dielectric layer.
    Type: Application
    Filed: November 27, 2013
    Publication date: May 28, 2015
    Applicant: International Business Machines Corporation
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Patent number: 9040406
    Abstract: A semiconductor chip includes a substrate having a frontside and a backside coupled to a ground. The chip includes a circuit in the substrate at the frontside. A through silicon via (TSV) having a front-end, a back-end, and a lateral surface is included. The back-end and lateral surface of the TSV are in the substrate, and the front-end of the TSV is substantially parallel to the frontside of the substrate. The chip also includes an antifuse material deposited between the back-end and lateral surface of the TSV and the substrate. The antifuse material insulates the TSV from the substrate. The chip includes a ground layer insulated from the substrate and coupled with the TSV and the circuit. The ground layer conducts a program voltage to the TSV to cause a portion of the antifuse material to migrate away from the TSV, thereby connecting the circuit to the ground.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: May 26, 2015
    Assignee: International Business Machines Corporation
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Publication number: 20150127879
    Abstract: A signaling bus having a plurality of adjacent logical lanes, each logical lane having an odd signal path and an even signal path. Driving circuitry drives each logical lane by transmitting, if data has changed from an immediately preceding cycle, a one cycle signal having a first transition direction on the even signal path on even cycles and transmitting a one cycle signal having the first transition direction on odd cycles. If data has not changed, transmitting a two cycle signal having a second transition direction on the even signal path on even cycles and transmitting a two cycle signal on the odd path having the second transition direction on odd cycles. Receiver circuitry alternates selection of the even cycle path and the odd cycle path to determine if data has changed from the immediately preceding cycle.
    Type: Application
    Filed: November 7, 2013
    Publication date: May 7, 2015
    Inventors: David H. Allen, Douglas M. Dewanz, David P. Paulsen, John E. Sheets, II
  • Patent number: 9024387
    Abstract: A semiconductor device has a FinFET with at least two independently controllable FETs on a single fin. The fin may have a body area with a width between two vertical sides, each side has a single FET. The fin also may have a top fin area that is wider than the body area and is electrically independent from the two FETs. The top fin area may be capable of receiving a body contact structure which may be connected to an electrical conductor as to regulate the voltage in the body area of the fin.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: May 5, 2015
    Assignee: International Business Machines Corporation
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Patent number: 9021407
    Abstract: A multiple-patterned semiconductor device is provided. The semiconductor device includes one or more layers with signal tracks defined by masks and a structure for transferring a signal between signal tracks and repowering the signal.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: April 28, 2015
    Assignee: International Business Machines Corporation
    Inventors: David H. Allen, Douglas M. Dewanz, David P. Paulsen, John E. Sheets, II
  • Patent number: 9018713
    Abstract: A plural differential pair may include a first semiconductor fin having first and second drain areas. First and second body areas may be disposed on the fin between the first and second drain areas. A source area may be disposed on the fin between the first and second body areas. The plural differential pair may include a first pair of fin field effect (FinFET) transistors and a second pair of FinFET transistors. The plural differential pair may include first and second top fin areas projecting from respective portions of a top side of the first and second body areas of the fin. The first and second top fin areas may each have a width that is wider than the first and second body areas of the fin.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: April 28, 2015
    Assignee: International Business Machines Corporation
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, Gregory J. Uhlmann, Kelly L. Williams
  • Publication number: 20150076615
    Abstract: A semiconductor device includes a first fin rising out of a semiconductor base. It further includes a second fin rising out of the semiconductor base. The second fin is substantially parallel to the first fin that forms a span between the first fin and the second fin. A first dielectric layer is deposited on exposed surfaces of a first gate body area of the first fin, a second gate body area of the second fin, and an adjacent surface of the semiconductor base that defines the span between the first and second gate body areas. A gate electrode layer is sandwiched between the first dielectric layer and a second dielectric layer. The semiconductor device includes a third fin interdigitated between the first fin and the second fin within the span. Exposed surfaces of the gate body area of the third fin are in contact with the second dielectric layer.
    Type: Application
    Filed: September 19, 2013
    Publication date: March 19, 2015
    Applicant: International Business Machines Corporation
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams