Patents by Inventor David Todd Emerson

David Todd Emerson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8436368
    Abstract: A light emitting device includes a p-type semiconductor layer, an n-type semiconductor layer, and an active region between the n-type semiconductor layer and the p-type semiconductor layer. A non-transparent feature, such as a wire bond pad, is on the p-type semiconductor layer or on the n-type semiconductor layer opposite the p-type semiconductor layer, and a reduced conductivity region is in the p-type semiconductor layer or the n-type semiconductor layer and is aligned with the non-transparent feature. The reduced conductivity region may extend from a surface of the p-type semiconductor layer opposite the n-type semiconductor layer towards the active region and/or from a surface of the n-type semiconductor layer opposite the p-type semiconductor layer towards the active region.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: May 7, 2013
    Assignee: Cree, Inc.
    Inventors: David Todd Emerson, Kevin Haberern, Michael John Bergmann, David B. Slater, Jr., Matthew Donofrio, John Edmond
  • Publication number: 20130082291
    Abstract: A light emitting diode that when encapsulated within an overmolded hemispherical lens has a packaging factor less than 1.2.
    Type: Application
    Filed: October 4, 2011
    Publication date: April 4, 2013
    Inventors: James Ibbetson, David Todd Emerson
  • Patent number: 8333631
    Abstract: Methods of forming a light emitting device package assembly include defining a chromaticity region in a two dimensional chromaticity space within a 10-step MacAdam ellipse of a target chromaticity point, and subdividing the defined chromaticity region into at least three chromaticity subregions, providing a plurality of light emitting devices that emit light having a chromaticity that falls within the defined chromaticity region, selecting at least three of the plurality of light emitting devices, wherein each of the three light emitting devices emits light from a different one of the chromaticity subregions. The at least three light emitting devices are selected from chromaticity subregions that are complementary relative to the target chromaticity point to at least one other chromaticity subregion from which a light emitting device is selected.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: December 18, 2012
    Assignee: Cree, Inc.
    Inventors: David Todd Emerson, Bernd P. Keller, Mark McOlear, Peter S. Andrews
  • Publication number: 20120305958
    Abstract: Provided according to embodiments of the invention are phosphor compositions that include Ca1-x-ySrxEuyAlSiN3, wherein x is in a range of 0.50 to 0.99 and y is less than 0.013. Also provided according to embodiments of the invention are phosphor compositions that include Ca1-x-ySrxEuyAlSiN3, wherein x is in a range of 0.70 to 0.99 and y is in a range of 0.001 and 0.025. Also provided are methods of making phosphors and light emitting devices that include a phosphor composition according to an embodiment of the invention.
    Type: Application
    Filed: June 3, 2011
    Publication date: December 6, 2012
    Inventors: Harry A. Seibel, II, Brian Thomas Collins, David Todd Emerson
  • Publication number: 20120298955
    Abstract: A semiconductor device is provided that includes a Group III nitride based superlattice and a Group III nitride based active region comprising at least one quantum well structure on the superlattice. The quantum well structure includes a well support layer comprising a Group III nitride, a quantum well layer comprising a Group III nitride on the well support layer and a cap layer comprising a Group III nitride on the quantum well layer. A Group III nitride based semiconductor device is also provided that includes a gallium nitride based superlattice having at least two periods of alternating layers of InXGa1-XN and InYGa1-YN, where 0?X<1 and 0?Y<1 and X is not equal to Y. The semiconductor device may be a light emitting diode with a Group III nitride based active region. The active region may be a multiple quantum well active region.
    Type: Application
    Filed: June 27, 2012
    Publication date: November 29, 2012
    Inventors: David Todd Emerson, James Ibbetson, Michael John Bergmann, Kathleen Marie Doverspike, Michael John O'Loughlin, Howard Dean Nordby, JR., Amber Christine Abare
  • Publication number: 20120193649
    Abstract: An electronic device may include a packaging substrate having a packaging substrate face with a plurality of electrically conductive pads on the packaging substrate face. A first light emitting diode die may bridge first and second ones of the electrically conductive pads. More particularly, the first light emitting diode die may include first anode and cathode contacts respectively coupled to the first and second electrically conductive pads using metallic bonds. Moreover, widths of the metallic bonds between the first anode contact and the first pad and between the first cathode contact and the second pad may be at least 60 percent of a width of the first light emitting diode die. A second light emitting diode die may bridge third and fourth ones of the electrically conductive pads. The second light emitting diode die may include second anode and cathode contacts respectively coupled to the third and fourth electrically conductive pads using metallic bonds.
    Type: Application
    Filed: February 14, 2011
    Publication date: August 2, 2012
    Inventors: Matthew Donofrio, John Adam Edmond, Hua-Shuang Kong, Peter S. Andrews, David Todd Emerson
  • Publication number: 20120193660
    Abstract: Horizontal light emitting diodes include anode and cathode contacts on the same face and a transparent substrate having an oblique sidewall. A conformal phosphor layer having an average equivalent particle diameter d50 of at least about 10 ?m is provided on the oblique sidewall. High aspect ratio substrates may be provided. The LED may be directly attached to a submount.
    Type: Application
    Filed: January 31, 2011
    Publication date: August 2, 2012
    Inventors: Matthew Donofrio, John Adam Edmond, James Ibbetson, David Todd Emerson, Michael John Bergmann, Kevin Haberern, Raymond Rosado, Jeffrey Carl Britt
  • Publication number: 20120193661
    Abstract: A horizontal LED die is flip-chip mounted on a mounting substrate to define a gap that extends between the closely spaced apart anode and cathode contacts of the LED die, and between the closely spaced apart anode and cathode pads of the substrate. An encapsulant is provided on the light emitting diode die and the mounting substrate. The gap is configured to prevent sufficient encapsulant from entering the gap that would degrade operation of the LED.
    Type: Application
    Filed: May 20, 2011
    Publication date: August 2, 2012
    Inventors: David Todd Emerson, Raymond Rosado, Matthew Donofrio, John Adam Edmond
  • Patent number: 8227268
    Abstract: A light emitting diode is provided having a Group III nitride based superlattice and a Group III nitride based active region on the superlattice. The active region has at least one quantum well stricture. The quantum well structure includes a first Group III nitride based barrier layer, a Group III nitride based quantum well layer on the first barrier layer and a second Group III nitride based barrier layer. A Group III nitride based semiconductor device and methods of fabricating a Group III nitride based semiconductor device having an active region comprising at least one quantum well structure are provided. The quantum well structure includes a well support layer comprising a Group III nitride, a quantum well layer comprising a Group III nitride on the well support layer and a cap layer comprising a Group III nitride on the quantum well layer.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: July 24, 2012
    Assignee: Cree, Inc.
    Inventors: David Todd Emerson, James Ibbetson, Michael John Bergmann, Kathleen Marie Doverspike, Michael John O'Loughlin, Howard Dean Nordby, Jr., Amber Christine Abare
  • Publication number: 20120153343
    Abstract: A light emitting device includes a p-type semiconductor layer, an n-type semiconductor layer, and an active region between the n-type semiconductor layer and the p-type semiconductor layer. A non-transparent feature, such as a wire bond pad, is on the p-type semiconductor layer or on the n-type semiconductor layer opposite the p-type semiconductor layer, and a reduced conductivity region is in the p-type semiconductor layer or the n-type semiconductor layer and is aligned with the non-transparent feature. The reduced conductivity region may extend from a surface of the p-type semiconductor layer opposite the n-type semiconductor layer towards the active region and/or from a surface of the n-type semiconductor layer opposite the p-type semiconductor layer towards the active region.
    Type: Application
    Filed: February 27, 2012
    Publication date: June 21, 2012
    Inventors: David Todd Emerson, Kevin Haberern, Michael John Bergmann, David B. Slater, JR., Matthew Donofrio, John Edmond
  • Publication number: 20120126260
    Abstract: A semiconductor light emitting apparatus a semiconductor light emitting device configured to emit light inside a hollow shell including wavelength conversion material dispersed therein or thereon. A semiconductor light emitting apparatus according to some embodiments is capable of generating in excess of 230 lumens per watt.
    Type: Application
    Filed: October 21, 2011
    Publication date: May 24, 2012
    Inventors: Christopher P. Hussell, Florin Tudorica, David Todd Emerson
  • Publication number: 20120120118
    Abstract: LED devices includes a lead frame having a reflector cup with a round bottom surface and a wall surface having a variable inclination with respect to the bottom surface and defining an opening at an upper end thereof. An LED is mounted on the bottom surface of the reflector cup, and an LED module includes first and second LED device that emit different colors. The first and second LED devices have substantially matched far field patterns in a first and second direction, where a first viewing angle in the first direction is less than about 99°.
    Type: Application
    Filed: June 15, 2011
    Publication date: May 17, 2012
    Inventors: Chi Keung Chan, Zhi Kuan Zhang, Xiang Fei, Hao Liu, Ju Zuo Sheng, David Todd Emerson
  • Publication number: 20120119230
    Abstract: An LED package and a lead frame include a reflector cup having a bottom surface with an LED asymmetrically positioned on the bottom surface and a wall surface inclined relative to the bottom surface and defining an opening at an upper end thereof. The bottom surface of the reflector cup has a first axial dimension along a first axis and a second axial dimension along a second axis, orthogonal to the first axis. A display having an asymmetrical FFP and asymmetrical screen curve includes an array of the LED modules including a plurality of LED packages. At least some of the LED packages include a dome-shaped lens asymmetrically positioned with respect to a geometric center of the bottom surface of the reflector cup.
    Type: Application
    Filed: June 15, 2011
    Publication date: May 17, 2012
    Inventors: Chi Keung CHAN, Zhi Kuan Zhang, Yue Kwong Lau, Xiang Fei, Hao Liu, Ju Zuo Sheng, David Todd Emerson
  • Publication number: 20120104427
    Abstract: One embodiment of the surface mount LED package includes a lead frame and a plastic casing at least partially encasing the lead frame. The lead frame includes a plurality of electrically conductive chip carriers. There is an LED disposed on each one of the plurality of electrically conductive chip carriers. A profile height of the surface mount LED package is less than about 1.0 mm.
    Type: Application
    Filed: June 6, 2011
    Publication date: May 3, 2012
    Inventors: Chi Keung Chan, Chak Hau Pang, Fei Hong Li, Yue Kwong Lau, Jun Zhang, David Todd Emerson
  • Patent number: 8163577
    Abstract: A light emitting device includes a p-type semiconductor layer, an n-type semiconductor layer, and an active region between the n-type semiconductor layer and the p-type semiconductor layer. A non-transparent feature, such as a wire bond pad, is on the p-type semiconductor layer or on the n-type semiconductor layer opposite the p-type semiconductor layer, and a reduced conductivity region is in the p-type semiconductor layer or the n-type semiconductor layer and is aligned with the non-transparent feature. The reduced conductivity region may extend from a surface of the p-type semiconductor layer opposite the n-type semiconductor layer towards the active region and/or from a surface of the n-type semiconductor layer opposite the p-type semiconductor layer towards the active region.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: April 24, 2012
    Assignee: Cree, Inc.
    Inventors: David Todd Emerson, Kevin Haberern, Michael John Bergmann, David B. Slater, Jr., Matthew Donofrio, John Edmond
  • Publication number: 20120080709
    Abstract: Light emitting devices include an active region of semiconductor material and a first contact on the active region. The first contact is configured such that photons emitted by the active region pass through the first contact. A photon absorbing wire bond pad is provided on the first contact. The wire bond pad has an area less than the area of the first contact. A reflective structure is disposed between the first contact and the wire bond pad such that the reflective structure has substantially the same area as the wire bond pad. A second contact is provided opposite the active region from the first contact. The reflective structure may be disposed only between the first contact and the wire bond pad. Methods of fabricating such devices are also provided.
    Type: Application
    Filed: December 7, 2011
    Publication date: April 5, 2012
    Inventors: Kevin Haberern, Michael John Bergmann, Van Mieczkowski, David Todd Emerson
  • Publication number: 20120018701
    Abstract: Group III nitride based light emitting devices and methods of fabricating Group III nitride based light emitting devices are provided. The emitting devices include an n-type Group III nitride layer, a Group III nitride based active region on the n-type Group III nitride layer and comprising at least one quantum well structure, a Group III nitride layer including indium on the active region, a p-type Group III nitride layer including aluminum on the Group III nitride layer including indium, a first contact on the n-type Group III nitride layer and a second contact on the p-type Group III nitride layer. The Group III nitride layer including indium may also include aluminum.
    Type: Application
    Filed: September 30, 2011
    Publication date: January 26, 2012
    Inventors: Michael John Bergmann, David Todd Emerson
  • Patent number: RE43725
    Abstract: A light emitting diode is disclosed. The diode includes a silicon carbide substrate having a first conductivity type, a first gallium nitride layer above the SiC substrate having the same conductivity type as the substrate, a superlattice on the GaN layer formed of a plurality of repeating sets of alternating layers selected from among GaN, InGaN, and AlInGaN, a second GaN layer on the superlattice having the same conductivity type as the first GaN layer, a multiple quantum well on the second GaN layer, a third GaN layer on the multiple quantum well, a contact structure on the third GaN layer having the opposite conductivity type from the substrate and the first GaN layer, an ohmic contact to the SiC substrate, and an ohmic contact to the contact structure.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: October 9, 2012
    Assignee: Cree, Inc.
    Inventors: David Todd Emerson, Amber Christine Abare, Michael John Bergmann
  • Patent number: D669040
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: October 16, 2012
    Assignee: Cree, Inc.
    Inventors: Christopher P. Hussell, David Todd Emerson
  • Patent number: D684545
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: June 18, 2013
    Assignee: Cree Huizhou Solid State Lighting Company Limited
    Inventors: Chi Keung Chan, Chak Hau Pang, Fei Hong Li, David Todd Emerson