Patents by Inventor Deepak Shukla

Deepak Shukla has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9375704
    Abstract: A non-aqueous metal catalytic composition includes (a) a silver carboxylate-trialkyl(triaryl)phosphite complex comprising reducible silver ions in an amount of at least 2 weight %, (b) a silver ion photoreducing composition in an amount of at least 1 weight %, and (c) a photocurable component or a non-curable polymer or a combination of a photocurable component and a non-curable polymer. This non-aqueous metal catalytic composition can be used to form silver metal particles in situ during suitable reducing conditions. The silver metal can be provided in a suitable layer or pattern on a substrate, which can then be subsequently subjected to electroless plating to form electrically-conductive layers or patterns for use in various articles or as touch screen displays in electronic devices.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: June 28, 2016
    Assignee: EASTMAN KODAK COMPANY
    Inventor: Deepak Shukla
  • Patent number: 9377688
    Abstract: A non-aqueous metal catalytic composition includes (a) a complex of silver and a hindered aromatic N-heterocycle comprising reducible silver ions in an amount of at least 2 weight %, (b) a silver ion photoreducing composition in an amount of at least 1 weight %, and (c) a photocurable component, a non-curable polymer, or a combination of a photocurable component and a non-curable polymer. This non-aqueous metal catalytic composition can be used to form silver metal particles in situ during suitable reducing conditions. The silver metal can be provided in a suitable layer or pattern on a substrate, which can then be subsequently subjected to electroless plating to form electrically-conductive layers or patterns for use in various articles or as touch screen displays in electronic devices.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: June 28, 2016
    Assignee: EASTMAN KODAK COMPANY
    Inventor: Deepak Shukla
  • Patent number: 9376102
    Abstract: A vehicle drive includes a first gear set and a second gear set, a first motor/generator coupled to a sun gear of the first gear set, a second motor/generator selectively coupled to at least one of (a) a planetary gear carrier of the first gear set and (b) a ring gear of the first gear set, an engine coupled to the ring gear of the first gear set and selectively coupled to the second motor/generator, and a clutch configured to selectively engage the second motor/generator to the engine. The first motor/generator and the second motor/generator are electrically coupled without an energy storage device configured to at least one of (a) provide electrical energy to the first motor/generator or the second motor/generator to power the first motor/generator or the second motor/generator and (b) be charged by electrical energy from the first motor/generator or the second motor/generator.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: June 28, 2016
    Assignee: Oshkosh Defense, LLC
    Inventors: Deepak Shukla, Rongjun Zhang, Nader Nasr
  • Publication number: 20160177453
    Abstract: Multiple photocured and copper electrolessly plated patterns are formed on a continuous flexible solid polymeric film in a roll-to-roll process. A photocurable composition is applied directly to the film in a patternwise fashion using flexographic printing members to form multiple patterns of the photocurable composition directly on the film. The photocurable composition contains an N-oxyazinium salt photoinitiator, a photosensitizer for the N-oxyazinium salt, an organic phosphite N-oxyazinium salt efficiency amplifier, an aromatic heterocyclic nitrogen-containing base, a metal seed catalyst for copper electroless plating, and one or more photocurable acrylates in designed relationships. The multiple patterns of the photocurable composition are exposed to form multiple photocured patterns directly on a product substrate and then electrolessly plated with copper to form multiple copper electrolessly plated patterns.
    Type: Application
    Filed: February 29, 2016
    Publication date: June 23, 2016
    Inventor: Deepak Shukla
  • Publication number: 20160167019
    Abstract: A non-aqueous metal catalytic composition includes (a) a silver carboxylate-trialkyl(triaryl)phosphite complex comprising reducible silver ions in an amount of at least 2 weight %, (b) a silver ion photoreducing composition in an amount of at least 1 weight %, and (c) a photocurable component or a non-curable polymer or a combination of a photocurable component and a non-curable polymer. This non-aqueous metal catalytic composition can be used to form silver metal particles in situ during suitable reducing conditions. The silver metal can be provided in a suitable layer or pattern on a substrate, which can then be subsequently subjected to electroless plating to form electrically-conductive layers or patterns for use in various articles or as touch screen displays in electronic devices.
    Type: Application
    Filed: December 16, 2014
    Publication date: June 16, 2016
    Inventors: Deepak Shukla, Kevin M. Donovan
  • Publication number: 20160168714
    Abstract: A non-aqueous metal catalytic composition includes (a) a complex of silver and an oxime comprising reducible silver ions in an amount of at least 2 weight %, (b) a silver ion photoreducing composition in an amount of at least 1 weight %, and (c) a photocurable component, a non-curable polymer, or a combination of a photocurable component and a non-curable polymer. This non-aqueous metal catalytic composition can be used to form silver metal particles in situ during suitable reducing conditions. The silver metal can be provided in a suitable layer or pattern on a substrate, which can then be subsequently subjected to electroless plating to form electrically-conductive layers or patterns for use in various articles or as touch screen displays in electronic devices.
    Type: Application
    Filed: December 16, 2014
    Publication date: June 16, 2016
    Inventors: Deepak Shukla, Kevin Donovan
  • Publication number: 20160170301
    Abstract: A non-aqueous metal catalytic composition includes (a) a complex of silver and a hindered aromatic N-heterocycle comprising reducible silver ions in an amount of at least 2 weight %, (b) a silver ion photoreducing composition in an amount of at least 1 weight %, and (c) a photocurable component, a non-curable polymer, or a combination of a photocurable component and a non-curable polymer. This non-aqueous metal catalytic composition can be used to form silver metal particles in situ during suitable reducing conditions. The silver metal can be provided in a suitable layer or pattern on a substrate, which can then be subsequently subjected to electroless plating to form electrically-conductive layers or patterns for use in various articles or as touch screen displays in electronic devices.
    Type: Application
    Filed: December 16, 2014
    Publication date: June 16, 2016
    Inventor: Deepak Shukla
  • Publication number: 20160167036
    Abstract: A non-aqueous metal catalytic composition includes (a) a silver complex comprising reducible silver ions, (b) an organic phosphite, (c) an oxyazinium salt silver ion photoreducing agent, (d) a hindered pyridine, (e) a photocurable component, a non-curable polymer, or combination of a photocurable component and a non-curable polymer, and (f) a photosensitizer different from all components (a) through (e) in the non-aqueous metal catalytic composition, in an amount of at least 1 weight %. This non-aqueous metal catalytic composition can be used to form silver metal particles in situ during suitable reducing conditions. The silver metal can be provided in a suitable layer or pattern on a substrate, which can then be subsequently subjected to electroless plating to form electrically-conductive layers or patterns for use in various articles or as touch screen displays in electronic devices.
    Type: Application
    Filed: December 16, 2014
    Publication date: June 16, 2016
    Inventors: Deepak Shukla, Kevin M. Donovan
  • Publication number: 20160167037
    Abstract: A non-aqueous metal catalytic composition includes (a) a complex of silver and a hindered aromatic N-heterocycle comprising reducible silver ions in an amount of at least 2 weight %, (b) a silver ion photoreducing composition in an amount of at least 1 weight %, and (c) a photocurable component, a non-curable polymer, or a combination of a photocurable component and a non-curable polymer. This non-aqueous metal catalytic composition can be used to form silver metal particles in situ during suitable reducing conditions. The silver metal can be provided in a suitable layer or pattern on a substrate, which can then be subsequently subjected to electroless plating to form electrically-conductive layers or patterns for use in various articles or as touch screen displays in electronic devices.
    Type: Application
    Filed: December 16, 2014
    Publication date: June 16, 2016
    Inventors: Deepak Shukla, Kevin M. Donovan
  • Publication number: 20160168717
    Abstract: A non-aqueous metal catalytic composition includes (a) a silver complex comprising reducible silver ions, (b) an oxyazinium salt silver ion photoreducing agent, (c) a hindered pyridine, (d) a photocurable component, a non-curable polymer, or combination of a photocurable component and a non-curable polymer, and (e) a photo sensitizer different from all components (a) through (d) in the non-aqueous metal catalytic composition, in an amount of at least 1 weight %. This non-aqueous metal catalytic composition can be used to form silver metal particles in situ during suitable reducing conditions. The silver metal can be provided in a suitable layer or pattern on a substrate, which can then be subsequently subjected to electroless plating to form electrically-conductive layers or patterns for use in various articles or as touch screen displays in electronic devices.
    Type: Application
    Filed: January 20, 2016
    Publication date: June 16, 2016
    Inventor: Deepak Shukla
  • Publication number: 20160167018
    Abstract: A non-aqueous metal catalytic composition includes (a) a silver complex comprising reducible silver ions, (b) an organic phosphite, (c) an oxyazinium salt silver ion photoreducing agent, (d) a hindered pyridine, (e) a photocurable component, a non-curable polymer, or combination of a photocurable component and a non-curable polymer, and (f) a photo sensitizer different from all components (a) through (e) in the non-aqueous metal catalytic composition, in an amount of at least 1 weight %. This non-aqueous metal catalytic composition can be used to form silver metal particles in situ during suitable reducing conditions. The silver metal can be provided in a suitable layer or pattern on a substrate, which can then be subsequently subjected to electroless plating to form electrically-conductive layers or patterns for use in various articles or as touch screen displays in electronic devices.
    Type: Application
    Filed: December 16, 2014
    Publication date: June 16, 2016
    Inventor: Deepak Shukla
  • Publication number: 20160167021
    Abstract: A non-aqueous metal catalytic composition includes (a) a complex of silver and an oxime comprising reducible silver ions in an amount of at least 2 weight %, (b) a silver ion photoreducing composition in an amount of at least 1 weight %, and (c) a photocurable component, a non-curable polymer, or a combination of a photocurable component and a non-curable polymer. This non-aqueous metal catalytic composition can be used to form silver metal particles in situ during suitable reducing conditions. The silver metal can be provided in a suitable layer or pattern on a substrate, which can then be subsequently subjected to electroless plating to form electrically-conductive layers or patterns for use in various articles or as touch screen displays in electronic devices.
    Type: Application
    Filed: December 16, 2014
    Publication date: June 16, 2016
    Inventor: Deepak Shukla
  • Publication number: 20160167020
    Abstract: A non-aqueous metal catalytic composition includes (a) a silver carboxylate-trialkyl(triaryl)phosphite complex comprising reducible silver ions in an amount of at least 2 weight %, (b) a silver ion photoreducing composition in an amount of at least 1 weight %, and (c) a photocurable component or a non-curable polymer or a combination of a photocurable component and a non-curable polymer. This non-aqueous metal catalytic composition can be used to form silver metal particles in situ during suitable reducing conditions. The silver metal can be provided in a suitable layer or pattern on a substrate, which can then be subsequently subjected to electroless plating to form electrically-conductive layers or patterns for use in various articles or as touch screen displays in electronic devices.
    Type: Application
    Filed: December 16, 2014
    Publication date: June 16, 2016
    Inventor: Deepak Shukla
  • Patent number: 9365658
    Abstract: Acrylate-containing compositions are photocured by mixing at least one N-oxyazinium salt photoinitiator, a photosensitizer for the N-oxyazinium salt, an N-oxyazinium salt efficiency amplifier, an aromatic heterocyclic, nitrogen-containing base, and one or more photocurable acrylates to form a photocurable composition. This photocurable composition is then irradiated to effect polymerization of the one or more acrylates. This method can be carried out in oxygen-containing environments.
    Type: Grant
    Filed: October 6, 2014
    Date of Patent: June 14, 2016
    Assignee: EASTMAN KODAK COMPANY
    Inventor: Deepak Shukla
  • Patent number: 9360427
    Abstract: Pyrene can be used as a fluorescent probe for various industrial purposes. For example, it can be included in photocurable or thermally curable compositions and monitoring the fluorescence emission spectra before and after some curing will provide an indication of how much curing has occurred. Such monitoring can be carried out multiple times during a manufacturing process. Monitoring can also be done at different locations of a composition such as at inner and outer surfaces of a photocured or thermally cured layer.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: June 7, 2016
    Assignee: Eastman Kodak Company
    Inventor: Deepak Shukla
  • Publication number: 20160123880
    Abstract: Pyrene can be used as a fluorescent probe for various industrial purposes. For example, it can be included in photocurable or thermally curable compositions and monitoring the fluorescence emission spectra before and after some curing will provide an indication of how much curing has occurred. Such monitoring can be carried out multiple times during a manufacturing process. Monitoring can also be done at different locations of a composition such as at inner and outer surfaces of a photocured or thermally cured layer.
    Type: Application
    Filed: October 29, 2014
    Publication date: May 5, 2016
    Inventor: Deepak Shukla
  • Publication number: 20160123881
    Abstract: Pyrene can be used as a fluorescent probe for various industrial purposes. For example, it can be included in photocurable or thermally curable compositions and monitoring the fluorescence emission spectra before and after some curing will provide an indication of how much curing has occurred. Such monitoring can be carried out multiple times during a manufacturing process. Monitoring can also be done at different locations of a composition such as at inner and outer surfaces of a photocured or thermally cured layer.
    Type: Application
    Filed: October 29, 2014
    Publication date: May 5, 2016
    Inventor: Deepak Shukla
  • Publication number: 20160001765
    Abstract: A method of operating a first motor/generator and a second motor/generator in a vehicle drive includes operating the vehicle drive in a first operating mode and a second operating mode, the first operating mode including operating the first motor/generator as a generator and operating the second motor/generator as a motor, the second operating mode including operating both the first motor/generator as a generator and the second motor/generator as a generator when a first power generation capability associated with the first motor/generator is below a first threshold level, the first motor/generator and the second motor/generator providing electrical power to the DC bus without doing either of (a) providing electrical power to an energy storage device or (b) consuming electrical power from an energy storage device.
    Type: Application
    Filed: September 11, 2015
    Publication date: January 7, 2016
    Applicant: Oshkosh Defense, LLC
    Inventors: Deepak Shukla, Rongjun Zhang, Nader Nasr
  • Publication number: 20150361201
    Abstract: Photocurable or thermally curable thiosulfate-containing polymers have a Tg of at least 50° C. and (a) recurring units comprising pendant thiosulfate groups, and (b) recurring units comprising organic charge balancing cations that are associated with the (a) recurring units sufficiently to provide a net neutral charge with the pendant thiosulfate groups. These polymers can be represented by the following Structure (III): wherein R represents the organic polymer backbone, G is a single bond or a divalent linking group, M+ represents the organic charge balancing cation, and “a” represents at least 0.5 mol % and up to and including 50 mol % of (a) recurring units, and “b” represents the (b) recurring units and is at least equal to the “a” mol %, based on the total recurring units. These thiosulfate-containing polymers can be used to made dielectric compositions and gate dielectric layers in various devices.
    Type: Application
    Filed: June 11, 2014
    Publication date: December 17, 2015
    Inventors: Deepak Shukla, Kevin Donovan
  • Publication number: 20150361206
    Abstract: A photocurable or thermally curable thiosulfate-containing polymer has (a) recurring units and (d) recurring units, shown as either Structure (I) or (II) and Structure (V) below: R represents the organic polymer backbone, G is a single bond or divalent linking group, Q+ is an organic charge balancing cation, M represents a charge balancing cation, and “a” represents at least 0.5 mol % and to 99.5 mol % of (a) recurring units; R? represents the organic polymer backbone, G? is a carbonyloxy group, R3 comprises a monovalent linear, branched, or carbocyclic non-aromatic hydrocarbon group having 1 to 18 carbon atoms, or it comprises a phenyl group having one or more such substituents, and “d” represents at least 0.5 mol % and to 99.5 mol % of (d) recurring units. These thiosulfate-containing polymers can be used to made dielectric compositions and gate dielectric layers in various devices.
    Type: Application
    Filed: June 11, 2014
    Publication date: December 17, 2015
    Inventors: Deepak Shukla, Kevin M. Donovan, Mark R. Mis