Patents by Inventor Dharmendra S. Modha

Dharmendra S. Modha has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10678741
    Abstract: The present invention provides a system comprising a neurosynaptic processing device including multiple neurosynaptic core circuits for parallel processing, and a serial processing device including at least one processor core for serial processing. Each neurosynaptic core circuit comprises multiple electronic neurons interconnected with multiple electronic axons via a plurality of synapse devices. The system further comprises an interconnect circuit for coupling the neurosynaptic processing device with the serial processing device. The interconnect circuit enables the exchange of data packets between the neurosynaptic processing device and the serial processing device.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: June 9, 2020
    Assignee: International Business Machines Corporation
    Inventors: Bryan L. Jackson, Dharmendra S. Modha, Norman J. Pass
  • Publication number: 20200167158
    Abstract: A device for controlling neural inference processor cores is provided, including a compound instruction set architecture. The device comprises an instruction memory, which comprises a plurality of instructions for controlling a neural inference processor core. Each of the plurality of instructions comprises a control operation. The device further comprises a program counter. The device further comprises at least one loop counter register. The device is adapted to execute the plurality of instructions. Executing the plurality of instructions comprises: reading an instruction from the instruction memory based on a value of the program counter; updating the at least one loop counter register according to the control operation of the instruction; and updating the program counter according to the control operation of the instruction and a value of the at least one loop counter register.
    Type: Application
    Filed: November 28, 2018
    Publication date: May 28, 2020
    Inventors: Andrew S. Cassidy, Rathinakumar Appuswamy, John V. Arthur, Pallab Datta, Michael V. Debole, Steven K. Esser, Myron D. Flickner, Dharmendra S. Modha, Hartmut Penner, Jun Sawada, Brian Taba
  • Patent number: 10650301
    Abstract: Embodiments of the invention provide a neurosynaptic system comprising a delay unit for receiving and buffering axonal inputs, and a neural computation unit for generating neuronal outputs by performing a set of computations based on at least one axonal input received by the delay unit. The system further comprises a permutation unit for receiving external inputs to the system, and transmitting external outputs from the system. The permutation unit maps each external input received as either an axonal input to the delay unit or an external output from the system. The permutation unit maps each neuronal output generated by the neural computation unit as either an axonal input to the delay unit or an external output from the system. The neural computation unit comprises multiple electronic neurons, multiple electronic axons, and a plurality of electronic synapse devices interconnecting the neurons with the axons.
    Type: Grant
    Filed: May 8, 2014
    Date of Patent: May 12, 2020
    Assignee: International Business Machines Corporation
    Inventors: Rodrigo Alvarez-Icaza Rivera, Rathinakumar Appuswamy, John V. Arthur, Andrew S. Cassidy, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada
  • Patent number: 10628732
    Abstract: A reconfigurable neural network circuit is provided. The reconfigurable neural network circuit comprises an electronic synapse array including multiple synapses interconnecting a plurality of digital electronic neurons. Each neuron comprises an integrator that integrates input spikes and generates a signal when the integrated inputs exceed a threshold. The circuit further comprises a control module for reconfiguring the synapse array. The control module comprises a global final state machine that controls timing for operation of the circuit, and a priority encoder that allows spiking neurons to sequentially access the synapse array.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: April 21, 2020
    Assignee: International Business Machines Corporation
    Inventors: Bernard V. Brezzo, Leland Chang, Steven K. Esser, Daniel J. Friedman, Yong Liu, Dharmendra S. Modha, Robert K. Montoye, Bipin Rajendran, Jae-sun Seo, Jose A. Tierno
  • Publication number: 20200117981
    Abstract: Systems for neural network computation are provided. A neural network processor comprises a plurality of neural cores. The neural network processor has one or more processor precisions per activation. The processor is configured to accept data having a processor feature dimension. A transformation circuit is coupled to the neural network processor, and is adapted to: receive an input data tensor having an input precision per channel at one or more features; transform the input data tensor from the input precision to the processor precision; divide the input data into a plurality of blocks, each block conforming to one of the processor feature dimensions; provide each of the plurality of blocks to one of the plurality of neural cores. The neural network processor is adapted to compute, by the plurality of neural cores, output of one or more neural network layers.
    Type: Application
    Filed: October 11, 2018
    Publication date: April 16, 2020
    Inventors: John V. Arthur, Andrew S. Cassidy, Myron D. Flickner, Pallab Datta, Hartmut Penner, Rathinakumar Appuswamy, Jun Sawada, Dharmendra S. Modha, Steven K. Esser, Brian Taba, Jennifer Klamo
  • Publication number: 20200117988
    Abstract: Networks for distributing parameters and data to neural network compute cores. In various embodiments, a neural inference chip comprises a plurality of neural cores and at least one network interconnecting the plurality of neural cores. Each of the plurality of neural cores is adapted to apply a plurality of synaptic weights to a plurality of input activations to produce a plurality of output activations. The at least one network is adapted to simultaneously deliver synaptic weights and/or input activations to the plurality of neural cores.
    Type: Application
    Filed: October 11, 2018
    Publication date: April 16, 2020
    Inventors: John V. Arthur, Brian Taba, Rathinakumar Appuswamy, Andrew S. Cassidy, Pallab Datta, Steven K. Esser, Myron D. Flickner, Jennifer Klamo, Dharmendra S. Modha, Hartmut Penner, Jun Sawada
  • Patent number: 10621489
    Abstract: Massively parallel neural inference computing elements are provided. A plurality of multipliers is arranged in a plurality of equal-sized groups. Each of the plurality of multipliers is adapted to, in parallel, apply a weight to an input activation to generate an output. A plurality of adders is operatively coupled to one of the groups of multipliers. Each of the plurality of adders is adapted to, in parallel, add the outputs of the multipliers within its associated group to generate a partial sum. A plurality of function blocks is operatively coupled to one of the plurality of adders. Each of the plurality of function blocks is adapted to, in parallel, apply a function to the partial sum of its associated adder to generate an output value.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: April 14, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Rathinakumar Appuswamy, John V. Arthur, Andrew S. Cassidy, Pallab Datta, Steven K. Esser, Myron D. Flickner, Jennifer Klamo, Dharmendra S. Modha, Hartmut Penner, Jun Sawada, Brian Taba
  • Publication number: 20200104718
    Abstract: Parallel processing among arrays of physical neural cores is provided. An array of neural cores is adapted to compute, in parallel, an output activation tensor of a neural network layer. A network is operatively connected to each of the neural cores. The output activation tensor is distributed across the neural cores. An input activation tensor is distributed across the neural cores. A weight tensor is distributed across the neural cores. Each neural core's computation comprises multiplying elements of a portion of the input activation tensor at that core with elements of a portion of the weight tensor at that core, and storing the summed products in a partial sum corresponding to an element of the output activation tensor. Each element of the output activation tensor is computed by accumulating all of the partial sums corresponding to that element via the network.
    Type: Application
    Filed: September 28, 2018
    Publication date: April 2, 2020
    Inventors: Brian Taba, Andrew S. Cassidy, Myron D. Flickner, Pallab Datta, Hartmut Penner, Rathinakumar Appuswamy, Jun Sawada, John V. Arthur, Dharmendra S. Modha, Steven K. Esser, Jennifer Klamo
  • Publication number: 20200097833
    Abstract: Embodiments of the present invention relate to providing fault-tolerant power minimization in a multi-core neurosynaptic network. In one embodiment of the present invention, a method of and computer program product for fault-tolerant power-driven synthesis is provided. Power consumption of a neurosynaptic network is modeled as wire length. The neurosynaptic network comprises a plurality of neurosynaptic cores connected by a plurality of routers. At least one faulty core of the plurality of neurosynaptic cores is located. A placement blockage is modeled at the location of the at least one faulty core. A placement of the neurosynaptic cores is determined by minimizing the wire length.
    Type: Application
    Filed: November 26, 2019
    Publication date: March 26, 2020
    Inventors: Charles J. Alpert, Pallab Datta, Myron D. Flickner, Zhou Li, Dharmendra S. Modha, Gi-Joon Nam
  • Publication number: 20200065658
    Abstract: An event-driven neural network includes a plurality of interconnected core circuits is provided. Each core circuit includes an electronic synapse array has multiple digital synapses interconnecting a plurality of digital electronic neurons. A synapse interconnects an axon of a pre-synaptic neuron with a dendrite of a post-synaptic neuron. A neuron integrates input spikes and generates a spike event in response to the integrated input spikes exceeding a threshold. Each core circuit also has a scheduler that receives a spike event and delivers the spike event to a selected axon in the synapse array based on a schedule for deterministic event delivery.
    Type: Application
    Filed: October 28, 2019
    Publication date: February 27, 2020
    Inventors: Filipp Akopyan, John V. Arthur, Rajit Manohar, Paul A. Merolla, Dharmendra S. Modha, Alyosha Molnar, William P. Risk, III
  • Publication number: 20200050883
    Abstract: Embodiments of the invention provide a computer-readable medium of visual saliency estimation comprising receiving an input video of image frames. Each image frame has one or more channels, and each channel has one or more pixels. The computer-readable medium further comprises, for each channel of each image frame, generating corresponding neural spiking data based on a pixel intensity of each pixel of the channel, generating a corresponding multi-scale data structure based on the corresponding neural spiking data, and extracting a corresponding map of features from the corresponding multi-scale data structure. The multi-scale data structure comprises one or more data layers, wherein each data layer represents a spike representation of pixel intensities of a channel at a corresponding scale. The computer-readable medium further comprises encoding each map of features extracted as neural spikes.
    Type: Application
    Filed: October 15, 2019
    Publication date: February 13, 2020
    Inventors: Alexander Andreopoulos, Steven K. Esser, Dharmendra S. Modha
  • Patent number: 10558892
    Abstract: Embodiments of the invention provide a method for scene understanding based on a sequence of image frames. The method comprises converting each pixel of each image frame to neural spikes, and extracting features from the sequence of image frames by processing neural spikes corresponding to pixels of the sequence of image frames. The method further comprises encoding the extracted features as neural spikes, and classifying the extracted features.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: February 11, 2020
    Assignee: International Business Machines Corporation
    Inventors: Alexander Andreopoulos, Rathinakumar Appuswamy, Pallab Datta, Steven K. Esser, Dharmendra S. Modha
  • Publication number: 20200042856
    Abstract: Mapping of neural network layers to physical neural cores is provided. In various embodiments, a neural network description describing a plurality of neural network layers is read. Each of the plurality of neural network layers has an associated weight tensor, input tensor, and output tensor. A plurality of precedence relationships among the plurality of neural network layers is determined. The weight tensor, input tensor, and output tensor of each of the plurality of neural network layers are mapped onto an array of neural cores.
    Type: Application
    Filed: July 31, 2018
    Publication date: February 6, 2020
    Inventors: Pallab Datta, Andrew S. Cassidy, Myron D. Flickner, Hartmut Penner, Rathinakumar Appuswamy, Jun Sawada, John V. Arthur, Dharmendra S. Modha, Steven K. Esser, Brian Taba, Jennifer Klamo
  • Patent number: 10552740
    Abstract: Embodiments of the present invention relate to providing fault-tolerant power minimization in a multi-core neurosynaptic network. In one embodiment of the present invention, a method of and computer program product for fault-tolerant power-driven synthesis is provided. Power consumption of a neurosynaptic network is modeled as wire length. The neurosynaptic network comprises a plurality of neurosynaptic cores connected by a plurality of routers. At least one faulty core of the plurality of neurosynaptic cores is located. A placement blockage is modeled at the location of the at least one faulty core. A placement of the neurosynaptic cores is determined by minimizing the wire length.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: February 4, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Charles J. Alpert, Pallab Datta, Myron D. Flickner, Zhuo Li, Dharmendra S. Modha, Gi-Joon Nam
  • Publication number: 20200034687
    Abstract: Embodiments of the invention provide a neural core circuit comprising a synaptic interconnect network including plural electronic synapses for interconnecting one or more source electronic neurons with one or more target electronic neurons. The interconnect network further includes multiple axon paths and multiple dendrite paths. Each synapse is at a cross-point junction of the interconnect network between a dendrite path and an axon path. The core circuit further comprises a routing module maintaining routing information. The routing module routes output from a source electronic neuron to one or more selected axon paths. Each synapse provides a configurable level of signal conduction from an axon path of a source electronic neuron to a dendrite path of a target electronic neuron.
    Type: Application
    Filed: October 3, 2019
    Publication date: January 30, 2020
    Inventors: Steven K. Esser, Dharmendra S. Modha
  • Publication number: 20200034660
    Abstract: Embodiments of the invention provide a method for scene understanding based on a sequence of image frames. The method comprises converting each pixel of each image frame to neural spikes, and extracting features from the sequence of image frames by processing neural spikes corresponding to pixels of the sequence of image frames. The method further comprises encoding the extracted features as neural spikes, and classifying the extracted features.
    Type: Application
    Filed: October 3, 2019
    Publication date: January 30, 2020
    Inventors: Alexander Andreopoulos, Rathinakumar Appuswamy, Pallab Datta, Steven K. Esser, Dharmendra S. Modha
  • Publication number: 20200019836
    Abstract: Networks of distributed neural cores are provided with hierarchical parallelism. In various embodiments, a plurality of neural cores is provided. Each of the plurality of neural cores comprises a plurality of vector compute units configured to operate in parallel. Each of the plurality of neural cores is configured to compute in parallel output activations by applying its plurality of vector compute units to input activations. Each of the plurality of neural cores is assigned a subset of output activations of a layer of a neural network for computation. Upon receipt of a subset of input activations of the layer of the neural network, each of the plurality of neural cores computes a partial sum for each of its assigned output activations, and computes its assigned output activations from at least the computed partial sums.
    Type: Application
    Filed: July 12, 2018
    Publication date: January 16, 2020
    Inventors: John V. Arthur, Andrew S. Cassidy, Myron D. Flickner, Pallab Datta, Hartmut Penner, Rathinakumar Appuswamy, Jun Sawada, Dharmendra S. Modha, Steven K. Esser, Brian Taba, Jennifer Klamo
  • Publication number: 20200012929
    Abstract: Instruction distribution in an array of neural network cores is provided. In various embodiments, a neural inference chip is initialized with core microcode. The chip comprises a plurality of neural cores. The core microcode is executable by the neural cores to execute a tensor operation of a neural network. The core microcode is distributed to the plurality of neural cores via an on-chip network. The core microcode is executed synchronously by the plurality of neural cores to compute a neural network layer.
    Type: Application
    Filed: July 5, 2018
    Publication date: January 9, 2020
    Inventors: Hartmut Penner, Dharmendra S. Modha, John V. Arthur, Andrew S. Cassidy, Rathinakumar Appuswamy, Pallab Datta, Steven K. Esser, Myron D. Flickner, Jennifer Klamo, Jun Sawada, Brian Taba
  • Patent number: 10528843
    Abstract: Embodiments of the invention provide a method of visual saliency estimation comprising receiving an input video of image frames. Each image frame has one or more channels, and each channel has one or more pixels. The method further comprises, for each channel of each image frame, generating corresponding neural spiking data based on a pixel intensity of each pixel of the channel, generating a corresponding multi-scale data structure based on the corresponding neural spiking data, and extracting a corresponding map of features from the corresponding multi-scale data structure. The multi-scale data structure comprises one or more data layers, wherein each data layer represents a spike representation of pixel intensities of a channel at a corresponding scale. The method further comprises encoding each map of features extracted as neural spikes.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: January 7, 2020
    Assignee: International Business Machines Corporation
    Inventors: Alexander Andreopoulos, Steven K. Esser, Dharmendra S. Modha
  • Publication number: 20200005155
    Abstract: Mapping of logical neural cores to physical neural cores is provided. In various embodiments, a neural network description describing a plurality of logical cores is read. A plurality of precedence relationships is determined among the plurality of logical cores. Based on the plurality of precedence relationships, a directed acyclic graph among the plurality of logical cores is generated. By breadth first search of the directed acyclic graph, a schedule is generated. The schedule maps each of the plurality of logical cores to one of a plurality of physical cores at one of a plurality of time slices. Execution of the schedule is simulated.
    Type: Application
    Filed: June 29, 2018
    Publication date: January 2, 2020
    Inventors: Pallab Datta, Dharmendra S. Modha