Patents by Inventor Feng Fu

Feng Fu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9696959
    Abstract: A display device receiving an image is provided. The display device includes a micro control unit and a plurality of transceivers. The plurality of transceivers are disposed in a plurality of corners of the display device respectively and connected with the micro control unit. When the display device corporately display the image with a plurality of the display devices, the transceivers in the display device detects detected information from the transceivers in the adjacent display devices, and the micro control unit determines an absolute coordinate information of the display device according to the detected information, wherein the display device displays a portion of the image according to the absolute coordinate information of the display device.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: July 4, 2017
    Assignees: Qisda (Suzhou) Co., LTD., Qisda Corporation
    Inventor: Wei-Feng Fu
  • Publication number: 20170162720
    Abstract: A method of forming a channel of a gate structure is provided. A first epitaxial channel layer is formed within a first trench of the gate structure. A dry etching process is performed on the first epitaxial channel layer to form a second trench. A second epitaxial channel layer is formed within the second trench.
    Type: Application
    Filed: February 24, 2017
    Publication date: June 8, 2017
    Inventors: Ching-Feng Fu, De-Fang Chen, Chun-Hung Lee, Huan-Just Lin, Hui-Cheng Chang
  • Publication number: 20170154824
    Abstract: A method comprises depositing a sacrificial layer on a first dielectric layer over a substrate, applying a first patterning process, a second patterning process, a third patterning process and a fourth patterning process to the sacrificial layer to form a first group of openings, a second group of openings, a third group of openings and a fourth group of openings, respectively, in the sacrificial layer, wherein openings from different patterning processes are arranged in an alternating manner and four openings of the opening from the different patterning processes form a diamond shape and forming nanowires based on the first group of openings, the second group of openings, the third group of openings and the fourth group of openings.
    Type: Application
    Filed: February 10, 2017
    Publication date: June 1, 2017
    Inventors: Ching-Feng Fu, De-Fang Chen, Yu-Chan Yen, Chia-Ying Lee, Chun-Hung Lee, Huan-Just Lin
  • Patent number: 9646934
    Abstract: Integrated circuits and methods for manufacturing the same are provided. An integrated circuit includes a base dielectric layer, a first dielectric layer overlying the base dielectric layer, and a second dielectric layer overlying the first dielectric layer. A first overlay mark is positioned within the first dielectric layer, and a second overlay mark is positioned within the second dielectric layer, where the second overlay mark is offset from the first overlay mark. First and second blocks are positioned within the base dielectric layer, where the first overlay mark directly overlays the first block and the second overlay mark directly overlays the second block.
    Type: Grant
    Filed: May 26, 2015
    Date of Patent: May 9, 2017
    Assignee: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Shijie Wang, Yong Feng Fu, Siew Yong Leong, Lei Wang, Alex See
  • Patent number: 9633907
    Abstract: A method includes forming a pattern-reservation layer over a semiconductor substrate. The semiconductor substrate has a major surface. A first self-aligned multi-patterning process is performed to pattern a pattern-reservation layer. The remaining portions of the pattern-reservation layer include pattern-reservation strips extending in a first direction that is parallel to the major surface of the semiconductor substrate. A second self-aligned multi-patterning process is performed to pattern the pattern-reservation layer in a second direction parallel to the major surface of the semiconductor substrate. The remaining portions of the pattern-reservation layer include patterned features. The patterned features are used as an etching mask to form semiconductor nanowires by etching the semiconductor substrate.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: April 25, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ching-Feng Fu, De-Fang Chen, Yu-Chan Yen, Chia-Ying Lee, Chun-Hung Lee, Huan-Just Lin
  • Patent number: 9590090
    Abstract: A method of forming a channel of a gate structure is provided. A first epitaxial channel layer is formed within a first trench of the gate structure. A dry etching process is performed on the first epitaxial channel layer to form a second trench. A second epitaxial channel layer is formed within the second trench.
    Type: Grant
    Filed: January 8, 2014
    Date of Patent: March 7, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Ching-Feng Fu, De-Fang Chen, Chun-Hung Lee, Huan-Just Lin, Hui-Cheng Chang
  • Publication number: 20170062559
    Abstract: Some embodiments of the present disclosure relate to a method. In this method, a semiconductor substrate, which has an active region disposed in the semiconductor substrate, is received. A shallow trench isolation (STI) structure is formed to laterally surround the active region. An upper surface of the active region bounded by the STI structure is recessed to below an upper surface of the STI structure. The recessed upper surface extends continuously between inner sidewalls of the STI structure and leaves upper portions of the inner sidewalls of the STI structure exposed. A semiconductor layer is epitaxially grown on the recessed surface of the active region between the inner sidewalls of the STI structure. A gate dielectric is formed over the epitaxially-grown semiconductor layer. A conductive gate electrode is formed over the gate dielectric.
    Type: Application
    Filed: November 11, 2016
    Publication date: March 2, 2017
    Inventors: Harry-Hak-Lay Chuang, Bao-Ru Young, Wei Cheng Wu, Kong-Pin Chang, Chia Ming Liang, Meng-Fang Hsu, Ching-Feng Fu, Shih-Ting Hung
  • Publication number: 20170051944
    Abstract: A remotely adjustable orifice plate arrangement for a generator is provided. The arrangement includes an enclosed generator with an interior wall including an orifice through which a fluid flows. The arrangement also includes a first plate including an orifice and a remotely controllable motor. The first plate is coupled to the interior wall within a flow area of the generator such that at least a portion of the orifice overlaps the orifice of the interior wall. The arrangement also includes an adjustable orifice plate including an orifice wherein the adjustable orifice plate slides relative to the first plate to determine the size of a resultant orifice of the interior wall. The motor selectively controls the slideable movement of the adjustable orifice plate relative to the first plate and is controlled remotely from outside the enclosed generator. A method to remotely adjust fluid flow within an enclosed generator is also provided.
    Type: Application
    Filed: August 19, 2015
    Publication date: February 23, 2017
    Inventors: Robert R. Messel, JR., Feng Fu
  • Patent number: 9570358
    Abstract: A method comprises applying a first patterning process to a first photoresist layer to form a first opening, a second opening, a third opening and a fourth opening in the sacrificial layer, applying a second patterning process to a second photoresist layer to form a fifth opening, a sixth opening, a seventh opening and an eighth opening in the sacrificial layer, wherein distances between two adjacent openings formed from the first and second patterning processes are substantially equal to each other, applying a third patterning process to a third photoresist layer to form a ninth opening, a tenth opening, an eleventh opening and a twelfth opening in the sacrificial layer, wherein distances between two adjacent openings formed from the second and third patterning processes are substantially equal to each other and forming a plurality of nanowires based on the openings.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: February 14, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ching-Feng Fu, De-Fang Chen, Yu-Chan Yen, Chia-Ying Lee, Chun-Hung Lee, Huan-Just Lin
  • Publication number: 20160351507
    Abstract: Integrated circuits and methods for manufacturing the same are provided. An integrated circuit includes a base dielectric layer, a first dielectric layer overlying the base dielectric layer, and a second dielectric layer overlying the first dielectric layer. A first overlay mark is positioned within the first dielectric layer, and a second overlay mark is positioned within the second dielectric layer, where the second overlay mark is offset from the first overlay mark. First and second blocks are positioned within the base dielectric layer, where the first overlay mark directly overlays the first block and the second overlay mark directly overlays the second block.
    Type: Application
    Filed: May 26, 2015
    Publication date: December 1, 2016
    Inventors: Shijie Wang, Yong Feng Fu, Siew Yong Leong, Lei Wang, Alex See
  • Publication number: 20160343620
    Abstract: A method comprises applying a first patterning process to a first photoresist layer to form a first opening, a second opening, a third opening and a fourth opening in the sacrificial layer, applying a second patterning process to a second photoresist layer to form a fifth opening, a sixth opening, a seventh opening and an eighth opening in the sacrificial layer, wherein distances between two adjacent openings formed from the first and second patterning processes are substantially equal to each other, applying a third patterning process to a third photoresist layer to form a ninth opening, a tenth opening, an eleventh opening and a twelfth opening in the sacrificial layer, wherein distances between two adjacent openings formed from the second and third patterning processes are substantially equal to each other and forming a plurality of nanowires based on the openings.
    Type: Application
    Filed: August 5, 2016
    Publication date: November 24, 2016
    Inventors: Ching-Feng Fu, De-Fang Chen, Yu-Chan Yen, Chia-Ying Lee, Chun-Hung Lee, Huan-Just Lin
  • Patent number: 9502533
    Abstract: Some embodiments of the present disclosure relate to a method. In this method, a semiconductor substrate, which has an active region disposed in the semiconductor substrate, is received. A shallow trench isolation (STI) structure is formed to laterally surround the active region. An upper surface of the active region bounded by the STI structure is recessed to below an upper surface of the STI structure. The recessed upper surface extends continuously between inner sidewalls of the STI structure and leaves upper portions of the inner sidewalls of the STI structure exposed. A semiconductor layer is epitaxially grown on the recessed surface of the active region between the inner sidewalls of the STI structure. A gate dielectric is formed over the epitaxially-grown semiconductor layer. A conductive gate electrode is formed over the gate dielectric.
    Type: Grant
    Filed: August 26, 2015
    Date of Patent: November 22, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Harry-Hak-Lay Chuang, Bao-Ru Young, Wei Cheng Wu, Kong-Pin Chang, Chia Ming Liang, Meng-Fang Hsu, Ching-Feng Fu, Shih-Ting Hung
  • Publication number: 20160329406
    Abstract: The present disclosure relate to a method to an integrated chip having a source/drain self-aligned contact to a transistor or other semiconductor device. In some embodiments, the integrated chip has a pair of gate structures including a gate electrode arranged over a substrate and an insulating material arranged over the gate electrode. A source/drain region is arranged within the substrate between the pair of gate structures. An etch stop layer is arranged along sidewalls of the pair of gate structures and over the source/drain region, and a dielectric layer is over the insulating material. A source/drain contact is arranged over the insulating material and the etch stop layer and is separated from the sidewalls of the pair of gate structures by the etch stop layer. The source/drain contact is electrically coupled to the source/drain region.
    Type: Application
    Filed: July 21, 2016
    Publication date: November 10, 2016
    Inventors: Ching-Feng Fu, Yu-Chan Yen, Chia-Ying Lee
  • Publication number: 20160300931
    Abstract: A Fin-FET fabrication approach and structure are provided using channel epitaxial regrowth flow (CRF). The method includes forming a Fin-FET structure including a Si line on a substrate, shallow trench isolation (STI) oxide on both sides of the Si line on the substrate, and a poly wall on top of and across the STI oxide and the Si line, wherein the Si line is higher than the STI oxide from the substrate. The method further includes thinning the STI oxide and the Si line while maintaining about the same height ratio of the Si line and the STI oxide, and forming a spacer wall adjacent to both sides of the poly wall and further adjacent to Si and STI oxide side walls under the poly wall uncovered due thinning the STI oxide and the Si line.
    Type: Application
    Filed: June 16, 2016
    Publication date: October 13, 2016
    Inventors: Ching-Feng Fu, Shih-Ting Hung, Hsin-Chih Chen, Chih-Hsin Ko, Clement Hsingjen Wann
  • Patent number: 9460956
    Abstract: According to an exemplary embodiment, a semiconductor device is provided. The semiconductor device includes: a substrate; a first vertical structure protruding from the substrate; a second vertical structure protruding from the substrate; an STI between the first vertical structure and the second vertical structure; wherein a first horizontal width between the first vertical structure and the STI is substantially the same as a second horizontal width between the second vertical structure and the STI.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: October 4, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: De-Fang Chen, Teng-Chun Tsai, Ching-Feng Fu, Cheng-Tung Lin, Li-Ting Wang, Chih-Tang Peng
  • Publication number: 20160247896
    Abstract: A method includes providing a semiconductor structure that includes an epitaxial layer and a cap layer above the epitaxial layer, filling a trench above the cap layer with a sacrificial layer, and removing the sacrificial layer. As such, the cap layer is protected by the sacrificial layer during an etching process and the epitaxial layer is protected by the cap layer during another etching process.
    Type: Application
    Filed: May 4, 2016
    Publication date: August 25, 2016
    Inventors: CHING-FENG FU, YU-CHAN YEN, CHIH-HSIN KO, CHUN-HUNG LEE, HUAN-JUST LIN, HUI-CHENG CHANG
  • Patent number: 9419195
    Abstract: A light emitting diode (LED) die includes a first-type semiconductor layer, a multiple quantum well (MQW) layer in electrical contact with the first-type semiconductor layer configured to emit electromagnetic radiation, and a second-type semiconductor layer in electrical contact with the multiple quantum well (MQW) layer. The light emitting diode (LED) die also includes a first pad in electrical contact with the first-type semiconductor layer, and a second pad in electrical contact with the second type semiconductor layer. The light emitting diode (LED) die also includes a strap layer having conductive straps and contact areas located in trenches in the first-type semiconductor layer.
    Type: Grant
    Filed: July 27, 2014
    Date of Patent: August 16, 2016
    Assignee: SemiLEDS Optoelectronics Co., LTD.
    Inventor: Yi-Feng Fu Shih
  • Patent number: 9412656
    Abstract: Some embodiments of the present disclosure relate to a method to form a source/drain self-aligned contact to a transistor or other semiconductor device. The method comprises forming a pair of gate structures over a substrate, and forming a source/drain region between the pair of gate structures. The method further comprises forming a sacrificial source/drain contact which is arranged over the source/drain region and which is arranged laterally between neighboring sidewalls of the pair of gate structures. The method further comprises forming a dielectric layer which extends over the sacrificial source/drain contact and over the pair of gate structures. The dielectric layer differs from the sacrificial source/drain contact. The method further comprises removing a portion of the dielectric layer over the sacrificial source/drain contact and subsequently removing the sacrificial source/drain contact to form a recess, and filling the recess with a conductive material to form a source/drain contact.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: August 9, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ching-Feng Fu, Yu-Chan Yen, Chia-Ying Lee
  • Patent number: 9412614
    Abstract: A device comprises a first group of nanowires having a first pattern, a second group of nanowires having a second pattern, a third group of nanowires having a third pattern and a fourth group of nanowires having a fourth pattern, wherein the first pattern, the second pattern, the third pattern and the fourth pattern form a repeating pattern.
    Type: Grant
    Filed: May 29, 2014
    Date of Patent: August 9, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ching-Feng Fu, De-Fang Chen, Yu-Chan Yen, Chia-Ying Lee, Chun-Hung Lee, Huan-Just Lin
  • Patent number: 9391203
    Abstract: A Fin-FET fabrication approach and structure are provided using channel epitaxial regrowth flow (CRF). The method includes forming a Fin-FET structure including a Si line on a substrate, shallow trench isolation (STI) oxide on both sides of the Si line on the substrate, and a poly wall on top of and across the STI oxide and the Si line, wherein the Si line is higher than the STI oxide from the substrate. The method further includes thinning the STI oxide and the Si line while maintaining about the same height ratio of the Si line and the STI oxide, and forming a spacer wall adjacent to both sides of the poly wall and further adjacent to Si and STI oxide side walls under the poly wall uncovered due thinning the STI oxide and the Si line.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: July 12, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ching-Feng Fu, Shih-Ting Hung, Hsin-Chih Chen, Chih-Hsin Ko, Clement Hsingjen Wann