Patents by Inventor Franz-Josef Niedernostheide

Franz-Josef Niedernostheide has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240088890
    Abstract: A method of driving a transistor between switching states includes controlling a transition of a gate voltage at a gate terminal of a transistor during each of a plurality of turn-off switching events to turn off the transistor, wherein the transistor is configured to be turned off according to a desaturation time during each of the plurality of turn-off switching events; measuring a transistor parameter indicative of a voltage slew rate of the transistor for a first turn-off switching event during which the transistor is transitioned from an on state to an off state; and regulating a duration of the desaturation time for a next turn-off switching event based on the measured transistor parameter.
    Type: Application
    Filed: November 27, 2023
    Publication date: March 14, 2024
    Inventors: Guang ZENG, Franz-Josef NIEDERNOSTHEIDE, Mark-Matthias BAKRAN, Zheming LI
  • Publication number: 20240039526
    Abstract: A method of driving a transistor between switching states includes controlling a transition of a gate voltage at a gate terminal of a transistor during each of a plurality of turn-off switching events to turn off the transistor, wherein the transistor is configured to be turned off according to a desaturation time during each of the plurality of turn-off switching events; measuring a transistor parameter indicative of a voltage slew rate of the transistor for a first turn-off switching event during which the transistor is transitioned from an on state to an off state; and regulating a duration of the desaturation time for a next turn-off switching event based on the measured transistor parameter.
    Type: Application
    Filed: July 28, 2022
    Publication date: February 1, 2024
    Applicant: Infineon Technologies AG
    Inventors: Guang ZENG, Franz-Josef NIEDERNOSTHEIDE, Mark-Matthias BAKRAN, Zheming LI
  • Patent number: 11876509
    Abstract: A method of driving a transistor between switching states includes controlling a transition of a gate voltage at a gate terminal of a transistor during each of a plurality of turn-off switching events to turn off the transistor, wherein the transistor is configured to be turned off according to a desaturation time during each of the plurality of turn-off switching events; measuring a transistor parameter indicative of a voltage slew rate of the transistor for a first turn-off switching event during which the transistor is transitioned from an on state to an off state; and regulating a duration of the desaturation time for a next turn-off switching event based on the measured transistor parameter.
    Type: Grant
    Filed: July 28, 2022
    Date of Patent: January 16, 2024
    Assignee: Infineon Technologies AG
    Inventors: Guang Zeng, Franz-Josef Niedernostheide, Mark-Matthias Bakran, Zheming Li
  • Patent number: 11848377
    Abstract: A semiconductor component includes a semiconductor body having opposing first surface and second surfaces, and a side surface surrounding the semiconductor body. The semiconductor component also includes an active region including a first semiconductor region of a first conductivity type, which is electrically contacted via the first surface, and a second semiconductor region of a second conductivity type, which is electrically contacted via the second surface. The semiconductor component further includes an edge termination region arranged in a lateral direction between the first semiconductor region of the active region and the side surface, and includes a first edge termination structure and a second edge termination structure. The second edge termination structure is arranged in the lateral direction between the first edge termination structure and the side surface and extends from the first surface in a vertical direction more deeply into the semiconductor body than the first edge termination structure.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: December 19, 2023
    Assignee: Infineon Technologies AG
    Inventors: Anton Mauder, Hans-Joachim Schulze, Matteo Dainese, Elmar Falck, Franz-Josef Niedernostheide, Manfred Pfaffenlehner
  • Patent number: 11843368
    Abstract: A method is provided for driving a half bridge circuit that includes a first transistor and a second transistor. The method includes generating an off-current during a plurality of turn-off switching events to control a gate voltage of the second transistor; measuring a transistor parameter of the second transistor during a first turn-off switching event during which the second transistor is transitioned to an off state, wherein the transistor parameter is indicative of an oscillation at the first transistor during a corresponding turn-on switching event during which the first transistor is transitioned to an on state; and activating a portion of the off-current for the second turn-off switching event, including regulating an interval length of the second portion for the second turn-off switching event based on the measured transistor parameter measured during the first turn-off switching event.
    Type: Grant
    Filed: December 1, 2022
    Date of Patent: December 12, 2023
    Assignee: Infineon Technologies AG
    Inventors: Zheming Li, Mark-Matthias Bakran, Daniel Domes, Robert Maier, Franz-Josef Niedernostheide
  • Publication number: 20230353135
    Abstract: A gate driver system includes a gate driver circuit coupled to a gate terminal of a transistor and configured to control a gate voltage to generate an on-current during a plurality of turn-on switching events to turn on the transistor. The gate driver circuit includes a first driver configured to source a first portion of the on-current to the gate terminal to charge a first portion of the gate voltage, and a second driver configured to, during a boost interval, source a second portion of the on-current to the gate terminal to charge a second portion of the gate voltage. A control circuit measures a transistor parameter representative of a reverse recovery current of the transistor for a turn-on switching event during which the transistor is transitioned to an on state and controls the first driver and controls the second driver based on the measured transistor parameter.
    Type: Application
    Filed: July 12, 2023
    Publication date: November 2, 2023
    Inventors: Zheming LI, Mark-Matthias BAKRAN, Daniel DOMES, Robert MAIER, Franz-Josef NIEDERNOSTHEIDE
  • Patent number: 11770119
    Abstract: A gate driver system includes a gate driver circuit coupled to a gate terminal of a transistor and configured to generate an on-current during a plurality of turn-on switching events to turn on the transistor, wherein the gate driver circuit includes a first driver configured to source a first portion of the on-current to the gate terminal to charge a first portion of the gate voltage and a second driver configured to, during a first boost interval, source a second portion of the on-current to the gate terminal to charge a second portion of the gate voltage; a measurement circuit configured to measure a transistor parameter indicative of an oscillation of a load current for a turn-on switching event; and a controller configured to receive the measured transistor parameter and regulate a length of the first boost interval based on the measured transistor parameter.
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: September 26, 2023
    Assignee: Infineon Technologies AG
    Inventors: Zheming Li, Mark-Matthias Bakran, Daniel Domes, Robert Maier, Franz-Josef Niedernostheide
  • Publication number: 20230088339
    Abstract: A method is provided for driving a half bridge circuit that includes a first transistor and a second transistor. The method includes generating an off-current during a plurality of turn-off switching events to control a gate voltage of the second transistor; measuring a transistor parameter of the second transistor during a first turn-off switching event during which the second transistor is transitioned to an off state, wherein the transistor parameter is indicative of an oscillation at the first transistor during a corresponding turn-on switching event during which the first transistor is transitioned to an on state; and activating a portion of the off-current for the second turn-off switching event, including regulating an interval length of the second portion for the second turn-off switching event based on the measured transistor parameter measured during the first turn-off switching event.
    Type: Application
    Filed: December 1, 2022
    Publication date: March 23, 2023
    Inventors: Zheming LI, Mark-Matthias BAKRAN, Daniel DOMES, Robert MAIER, Franz-Josef NIEDERNOSTHEIDE
  • Publication number: 20230061697
    Abstract: A method is provided for driving a half bridge circuit that includes a first transistor and a second transistor that are switched in a complementary manner. The method includes generating an off-current during a plurality of turn-off switching events to control a gate voltage of the second transistor; measuring a transistor parameter of the second transistor during a first turn-off switching event during which the second transistor is transitioned to an off state, wherein the transistor parameter is indicative of an oscillation at the first transistor during a corresponding turn-on switching event during which the first transistor is transitioned to an on state; and activating a portion of the off-current for the second turn-off switching event, including regulating an interval length of the second portion for the second turn-off switching event based on the measured transistor parameter measured during the first turn-off switching event.
    Type: Application
    Filed: August 27, 2021
    Publication date: March 2, 2023
    Applicant: Infineon Technologies AG
    Inventors: Zheming LI, Mark-Matthias BAKRAN, Daniel DOMES, Robert MAIER, Franz-Josef NIEDERNOSTHEIDE
  • Patent number: 11595035
    Abstract: A method is provided for driving a half bridge circuit that includes a first transistor and a second transistor that are switched in a complementary manner. The method includes generating an off-current during a plurality of turn-off switching events to control a gate voltage of the second transistor; measuring a transistor parameter of the second transistor during a first turn-off switching event during which the second transistor is transitioned to an off state, wherein the transistor parameter is indicative of an oscillation at the first transistor during a corresponding turn-on switching event during which the first transistor is transitioned to an on state; and activating a portion of the off-current for the second turn-off switching event, including regulating an interval length of the second portion for the second turn-off switching event based on the measured transistor parameter measured during the first turn-off switching event.
    Type: Grant
    Filed: August 27, 2021
    Date of Patent: February 28, 2023
    Assignee: Infineon Technologies AG
    Inventors: Zheming Li, Mark-Matthias Bakran, Daniel Domes, Robert Maier, Franz-Josef Niedernostheide
  • Publication number: 20220393675
    Abstract: A gate driver system includes a gate driver circuit coupled to a gate terminal of a transistor and configured to generate an on-current during a plurality of turn-on switching events to turn on the transistor, wherein the gate driver circuit includes a first driver configured to source a first portion of the on-current to the gate terminal to charge a first portion of the gate voltage and a second driver configured to, during a first boost interval, source a second portion of the on-current to the gate terminal to charge a second portion of the gate voltage; a measurement circuit configured to measure a transistor parameter indicative of an oscillation of a load current for a turn-on switching event; and a controller configured to receive the measured transistor parameter and regulate a length of the first boost interval based on the measured transistor parameter.
    Type: Application
    Filed: June 29, 2022
    Publication date: December 8, 2022
    Applicant: Infineon Technologies AG
    Inventors: Zheming LI, Mark-Matthias BAKRAN, Daniel DOMES, Robert MAIER, Franz-Josef NIEDERNOSTHEIDE
  • Patent number: 11444613
    Abstract: A gate driver system includes a gate driver circuit coupled to a gate terminal of a transistor and configured to generate an on-current during a plurality of turn-on switching events to turn on the transistor, wherein the gate driver circuit includes a first driver configured to source a first portion of the on-current to the gate terminal to charge a first portion of the gate voltage and a second driver configured to, during a first boost interval, source a second portion of the on-current to the gate terminal to charge a second portion of the gate voltage; a measurement circuit configured to measure a transistor parameter indicative of an oscillation of a load current for a turn-on switching event; and a controller configured to receive the measured transistor parameter and regulate a length of the first boost interval based on the measured transistor parameter.
    Type: Grant
    Filed: July 12, 2021
    Date of Patent: September 13, 2022
    Inventors: Zheming Li, Mark-Matthias Bakran, Daniel Domes, Robert Maier, Franz-Josef Niedernostheide
  • Patent number: 11309410
    Abstract: A semiconductor device is described in which a conductive channel is present along an active gate trench of the device when a gate potential is at an on-voltage, whereas no conductive channel is present along an inactive trench of the device for the same gate potential condition.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: April 19, 2022
    Assignee: Infineon Technologies AG
    Inventors: Maria Cotorogea, Frank Wolter, Hans-Joachim Schulze, Franz-Josef Niedernostheide, Yvonne Gawlina-Schmidl
  • Publication number: 20220102478
    Abstract: A voltage-controlled switching device includes a drain/drift structure formed in a semiconductor portion with a lateral cross-sectional area AQ, a source/emitter terminal, and an emitter channel region between the drain/drift structure and the source/emitter terminal. A resistive path electrically connects the source/emitter terminal and the emitter channel region. The resistive path has an electrical resistance of at least 0.1 m?*cm2/AQ.
    Type: Application
    Filed: September 28, 2021
    Publication date: March 31, 2022
    Inventors: Christian Philipp Sandow, Anton Mauder, Franz-Josef Niedernostheide
  • Patent number: 11276772
    Abstract: A power semiconductor transistor includes: a semiconductor body coupled to a load terminal; a drift region in the semiconductor body and having dopants of a first conductivity type; a first trench extending into the semiconductor body along a vertical direction and including a control electrode electrically insulated from the semiconductor body by an insulator; a second trench extending into the semiconductor body along the vertical direction; a mesa region arranged between the trenches and including a source region electrically connected to the load terminal and a channel region separating the source and drift regions; and a portion of a contiguous plateau region of a second conductivity type arranged in the semiconductor drift region and extending below the trenches and below the channel and source regions, the contiguous plateau region having a plurality of openings aligned below the channel region in a widthwise direction of the channel region.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: March 15, 2022
    Assignee: Infineon Technologies AG
    Inventors: Anton Mauder, Franz-Josef Niedernostheide, Christian Philipp Sandow
  • Patent number: 11264459
    Abstract: A power semiconductor device includes a semiconductor body having front and back sides. The semiconductor body includes drift, field stop and emitter adjustment regions each of a first conductivity type. The field stop region is arranged between the drift region and the backside and has dopants of the first conductivity type at a higher dopant concentration than the drift region. The emitter adjustment region is arranged between the field stop region and the backside and has dopants of the first conductivity type at a higher dopant concentration than the field stop region. The semiconductor body has a concentration of interstitial oxygen of at least 1E17 cm?3. The field stop region includes a region where the dopant concentration is higher than that in the drift region at least by a factor of three. At least 20% of the dopants of the first conductivity type in the region are oxygen-induced thermal donors.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: March 1, 2022
    Assignee: Infineon Technologies AG
    Inventors: Roman Baburske, Moriz Jelinek, Franz-Josef Niedernostheide, Frank Dieter Pfirsch, Christian Philipp Sandow, Hans-Joachim Schulze
  • Publication number: 20220059650
    Abstract: A power semiconductor device includes a semiconductor body coupled to first and second load terminal structures, an active cell field in the body, and a plurality of first and second cells in the active cell field. Each cell is electrically connected to the first load terminal structure and to a drift region. Each first cell includes a mesa having a port region electrically connected to the first load terminal structure, and a channel region coupled to the drift region. Each second cell includes a mesa having a port region of the opposite conductivity type electrically connected to the first load terminal structure, and a channel region coupled to the drift region. Each mesa is spatially confined in a direction perpendicular to a direction of the load current within the respective mesa, by an insulation structure and has a total extension of less than 100 nm in the direction.
    Type: Application
    Filed: November 5, 2021
    Publication date: February 24, 2022
    Inventors: Anton Mauder, Franz-Josef Niedernostheide, Christian Philipp Sandow
  • Patent number: 11257914
    Abstract: A semiconductor die includes a semiconductor body having first and second active portions. The first active portion includes first source regions. The second active portion includes second source regions. A gate structure extends from a first surface into the semiconductor body and has a longitudinal gate extension along a lateral first direction. A first load pad and the first source regions are electrically connected. A second load pad and the second source regions are electrically connected. A gap laterally separates the first and second load pads. A lateral longitudinal extension of the gap is parallel to the first direction or deviates therefrom by not more than 60 degree. A connection structure electrically connects the first and second load pads. The connection structure is formed in a groove extending from the first surface into the semiconductor body and/or in a wiring layer formed on the first surface.
    Type: Grant
    Filed: October 9, 2020
    Date of Patent: February 22, 2022
    Assignee: Infineon Technologies AG
    Inventors: Vera Van Treek, Roman Baburske, Christian Jaeger, Christian Robert Mueller, Franz-Josef Niedernostheide, Frank Dieter Pfirsch, Alexander Philippou, Judith Specht
  • Publication number: 20220013625
    Abstract: A vertical power semiconductor device is proposed. The vertical power semiconductor device includes a semiconductor body including a semiconductor substrate and a semiconductor layer on the semiconductor substrate. The semiconductor body has a first main surface and a second main surface opposite to the first main surface along a vertical direction. The vertical power semiconductor device further includes a drift region in the semiconductor body. A first part of the drift region is arranged in the semiconductor substrate. A second part of the drift region is arranged in the semiconductor layer. The vertical power semiconductor device further includes a field stop region arranged in the semiconductor substrate, wherein a doping concentration of the field stop region averaged along the vertical direction is larger than a doping concentration of the drift region averaged along the vertical direction.
    Type: Application
    Filed: July 8, 2021
    Publication date: January 13, 2022
    Inventors: Hans-Joachim Schulze, Philipp Kohler-Redlich, Thomas Laska, Franz-Josef Niedernostheide, Vera van Treek
  • Patent number: 11171202
    Abstract: A power semiconductor device includes a semiconductor body coupled to first and second load terminal structures, an active cell field in the body, and a plurality of first and second cells in the active cell field. Each cell is electrically connected to the first load terminal structure and to a drift region. Each first cell includes a mesa having a port region electrically connected to the first load terminal structure, and a channel region coupled to the drift region. Each second cell includes a mesa having a port region of the opposite conductivity type electrically connected to the first load terminal structure, and a channel region coupled to the drift region. Each mesa is spatially confined in a direction perpendicular to a direction of the load current within the respective mesa, by an insulation structure and has a total extension of less than 100 nm in the direction.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: November 9, 2021
    Assignee: Infineon Technologies AG
    Inventors: Anton Mauder, Franz-Josef Niedernostheide, Christian Philipp Sandow