Patents by Inventor Franz-Josef Niedernostheide

Franz-Josef Niedernostheide has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190371794
    Abstract: A power semiconductor device includes a semiconductor body coupled to first and second load terminal structures, and first and second cells each configured for controlling a load current and electrically connected to the first load terminal structure and to a drift region. A first mesa in the first cell includes a port region electrically connected to the first load terminal structure, and a first channel region coupled to the drift region. A second mesa included in the second cell includes a port region electrically connected to the first load terminal structure, and a second channel region coupled to the drift region. The mesas are spatially confined in a direction perpendicular to a direction of the load current by an insulation structure, and have a total extension of less than 100 nm in that direction. The first channel region includes an inversion channel. The second channel region includes an accumulation channel.
    Type: Application
    Filed: July 10, 2019
    Publication date: December 5, 2019
    Inventors: Anton Mauder, Franz-Josef Niedernostheide, Christian Philipp Sandow
  • Patent number: 10483384
    Abstract: A transistor device includes a first emitter region of a first doping type, a second emitter region of a second doping type, a body of the second doping type, a drift region of the first doping type, a field-stop region of the first doping type, at least one boost structure, and a gate electrode. The boost structure is arranged between the field-stop region and the second emitter region. The at least one boost structure includes a base region of the first doping type and at least one auxiliary emitter region of the second doping type separated from the second emitter region by the base region. An overall dopant dose in the drift region and the field-stop region in a current flow direction of the transistor device is higher than a breakthrough charge of a semiconductor material of the drift region and the field-stop region.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: November 19, 2019
    Assignee: Infineon Technologies AG
    Inventors: Riteshkumar Bhojani, Franz-Josef Niedernostheide, Hans-Joachim Schulze, Josef Lutz, Roman Baburske
  • Publication number: 20190333991
    Abstract: A transistor device includes a first silicon nanowire array-MOSFET and a second silicon nanowire array-MOSFET integrated with a bulk drift region. The first silicon nanowire array-MOSFET is configured as an n-MOSFET by substantially only accommodating an electron current, and the second silicon nanowire array-MOSFET is configured as a p-MOSFET by substantially only accommodating a hole electron current. A current strength of a current through the first silicon nanowire array-MOSFET caused by electrons is at least 10 times larger than a current through the first silicon nanowire array-MOSFET caused by holes in an on-state of the transistor device. Further embodiments of transistor devices are described.
    Type: Application
    Filed: July 9, 2019
    Publication date: October 31, 2019
    Inventors: Christian Philipp Sandow, Franz Josef Niedernostheide, Vera van Treek
  • Patent number: 10461739
    Abstract: Transistor devices are provided. A transistor device includes a unipolar transistor coupled between a first terminal and a second terminal; and a bipolar transistor coupled in parallel to the unipolar transistor between the first terminal and the second terminal. The bipolar transistor is configured to carry a majority of a current flowing through the transistor device when at least one of the current or a control voltage controlling the unipolar transistor and the bipolar transistor exceeds a predetermined threshold. The bipolar transistor is further configured to have a threshold voltage higher than a threshold voltage of the unipolar transistor, and a difference between the threshold voltage of the bipolar transistor and the threshold voltage of the unipolar transistor is at least 1 V.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: October 29, 2019
    Assignee: Infineon Technologies Austria AG
    Inventors: Thomas Basler, Roman Baburske, Johannes Georg Laven, Franz-Josef Niedernostheide, Hans-Joachim Schulze
  • Patent number: 10453918
    Abstract: A power semiconductor device includes a semiconductor body coupled to first and second load terminal structures, first and second cells electrically connected to the first load terminal structure and to a drift region, the drift region having a first conductivity type; a first mesa in the first cell and including: a port region electrically connected to the first load terminal structure, and a channel region coupled to the drift region; a second mesa in the second cell and including: a port region of the opposite conductivity type and electrically connected to the first load terminal structure, and a channel region coupled to the drift region. Each mesa is spatially confined, in a direction perpendicular to a direction of the load current within the respective mesa, by an insulation structure. The insulation structure houses a control electrode structure, and a guidance electrode arranged between the mesas.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: October 22, 2019
    Assignee: Infineon Technologies AG
    Inventors: Anton Mauder, Franz-Josef Niedernostheide, Christian Philipp Sandow
  • Publication number: 20190319123
    Abstract: A semiconductor device is described in which a conductive channel is present along an active gate trench of the device when a gate potential is at an on-voltage, whereas no conductive channel is present along an inactive gate trench of the device for the same gate potential condition.
    Type: Application
    Filed: June 28, 2019
    Publication date: October 17, 2019
    Inventors: Maria Cotorogea, Frank Wolter, Hans-Joachim Schulze, Franz-Josef Niedernostheide, Yvonne Gawlina-Schmidl
  • Publication number: 20190296135
    Abstract: A power semiconductor transistor includes: a semiconductor body coupled to a load terminal; a drift region in the semiconductor body and having dopants of a first conductivity type; a first trench extending into the semiconductor body along a vertical direction and including a control electrode electrically insulated from the semiconductor body by an insulator; a second trench extending into the semiconductor body along the vertical direction; a mesa region arranged between the trenches and including a source region electrically connected to the load terminal and a channel region separating the source and drift regions; and a portion of a contiguous plateau region of a second conductivity type arranged in the semiconductor drift region and extending below the trenches and below the channel and source regions, the contiguous plateau region having a plurality of openings aligned below the channel region in a widthwise direction of the channel region.
    Type: Application
    Filed: May 29, 2019
    Publication date: September 26, 2019
    Inventors: Anton Mauder, Franz-Josef Niedernostheide, Christian Philipp Sandow
  • Patent number: 10404250
    Abstract: Transistor devices are described that include a first transistor and a second transistor coupled in parallel between a first terminal and a second terminal. The second transistor is based on a wide bandgap semiconductor material. The second transistor has a breakthrough voltage lower than a breakthrough voltage of the first transistor over a predetermined operating range. The predetermined operating range comprises at least an operating range for which the transistor device is specified.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: September 3, 2019
    Assignee: Infineon Technologies AG
    Inventors: Thomas Basler, Roman Baburske, Johannes Georg Laven, Franz-Josef Niedernostheide, Hans-Joachim Schulze
  • Publication number: 20190267447
    Abstract: A power semiconductor device includes a semiconductor body coupled to first and second load terminal structures, an active cell field in the body, and a plurality of first and second cells in the active cell field. Each cell is electrically connected to the first load terminal structure and to a drift region. Each first cell includes a mesa having a port region electrically connected to the first load terminal structure, and a channel region coupled to the drift region. Each second cell includes a mesa having a port region of the opposite conductivity type electrically connected to the first load terminal structure, and a channel region coupled to the drift region. Each mesa is spatially confined in a direction perpendicular to a direction of the load current within the respective mesa, by an insulation structure and has a total extension of less than 100 nm in the direction.
    Type: Application
    Filed: May 13, 2019
    Publication date: August 29, 2019
    Inventors: Anton Mauder, Franz-Josef Niedernostheide, Christian Philipp Sandow
  • Patent number: 10396074
    Abstract: A power semiconductor device includes a semiconductor body coupled to first and second load terminal structures, and first and second cells each configured for controlling a load current and electrically connected to the first load terminal structure and to a drift region. A first mesa in the first cell includes a port region electrically connected to the first load terminal structure, and a first channel region coupled to the drift region. A second mesa included in the second cell includes a port region electrically connected to the first load terminal structure, and a second channel region coupled to the drift region. The mesas are spatially confined in a direction perpendicular to a direction of the load current by an insulation structure, and have a total extension of less than 100 nm in that direction. The first channel region includes an inversion channel. The second channel region includes an accumulation channel.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: August 27, 2019
    Assignee: Infineon Technologies AG
    Inventors: Anton Mauder, Franz-Josef Niedernostheide, Christian Philipp Sandow
  • Patent number: 10388776
    Abstract: A semiconductor device includes: a drift region formed in a semiconductor substrate; a body region above the drift region; an active gate trench extending from a first main surface and into the body region and including a first electrode coupled to a gate potential; a source region formed in the body region adjacent to the gate trench and coupled to a source potential; a first body trench extending from the first main surface and into the body region and including a second electrode coupled to the source potential; and an inactive gate trench extending from the first main surface and into the body region and including a third electrode coupled to the gate potential. A conductive channel is present along the active gate trench when the gate potential is at an on-voltage, whereas no conductive channel is present along the inactive gate trench for the same gate potential condition.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: August 20, 2019
    Assignee: Infineon Technologies AG
    Inventors: Maria Cotorogea, Frank Wolter, Hans-Joachim Schulze, Franz-Josef Niedernostheide, Yvonne Gawlina-Schmidl
  • Publication number: 20190237575
    Abstract: A semiconductor component includes a semiconductor body having opposing first surface and second surfaces, and a side surface surrounding the semiconductor body. The semiconductor component also includes an active region including a first semiconductor region of a first conductivity type, which is electrically contacted via the first surface, and a second semiconductor region of a second conductivity type, which is electrically contacted via the second surface. The semiconductor component further includes an edge termination region arranged in a lateral direction between the first semiconductor region of the active region and the side surface, and includes a first edge termination structure and a second edge termination structure. The second edge termination structure is arranged in the lateral direction between the first edge termination structure and the side surface and extends from the first surface in a vertical direction more deeply into the semiconductor body than the first edge termination structure.
    Type: Application
    Filed: January 31, 2019
    Publication date: August 1, 2019
    Inventors: Anton Mauder, Hans-Joachim Schulze, Matteo Dainese, Elmar Falck, Franz-Josef Niedernostheide, Manfred Pfaffenlehner
  • Patent number: 10367057
    Abstract: A power semiconductor device is disclosed. The device includes a semiconductor body coupled to a first load terminal structure and a second load terminal structure, a first cell and a second cell. A first mesa is included in the first cell, the first mesa including: a first port region and a first channel region. A second mesa included in the second cell, the second mesa including a second port region. A third cell is electrically connected to the second load terminal structure and electrically connected to a drift region. The third cell includes a third mesa comprising: a third port region, a third channel region, and a third control electrode.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: July 30, 2019
    Assignee: Infineon Technologies AG
    Inventors: Anton Mauder, Franz-Josef Niedernostheide, Frank Dieter Pfirsch, Christian Philipp Sandow
  • Patent number: 10340336
    Abstract: A power semiconductor device includes a semiconductor body coupled to first and second load terminal structures, an active cell field in the body, and a plurality of first and second cells in the active cell field. Each cell is electrically connected to the first load terminal structure and to a drift region. Each first cell includes a mesa having a port region electrically connected to the first load terminal structure, and a channel region coupled to the drift region. Each second cell includes a mesa having a port region of the opposite conductivity type electrically connected to the first load terminal structure, and a channel region coupled to the drift region. Each mesa is spatially confined in a direction perpendicular to a direction of the load current within the respective mesa, by an insulation structure and has a total extension of less than 100 nm in the direction.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: July 2, 2019
    Assignee: Infineon Technologies AG
    Inventors: Anton Mauder, Franz-Josef Niedernostheide, Christian Philipp Sandow
  • Publication number: 20190198610
    Abstract: A channel stopper region extending from a first main surface into a component layer of a first conductivity type is formed in an edge region of a component region, the edge region being adjacent to a sawing track region. Afterward, a doped region extending from the first main surface into the component layer is formed in the component region. The channel stopper region is formed by a photolithographic method that is carried out before a first photolithographic method for introducing dopants into a section of the component region outside the channel stopper region.
    Type: Application
    Filed: December 20, 2018
    Publication date: June 27, 2019
    Inventors: Elmar Falck, Franz-Josef Niedernostheide, Hans-Joachim Schulze
  • Publication number: 20190189789
    Abstract: A power semiconductor device has a semiconductor body coupled to first and second load terminal structures, the semiconductor body configured to conduct a load current during a conducting state of the device and having a drift region. The power semiconductor device includes a plurality of cells, each cell having: a first mesa in a first cell portion, the first mesa including: a first port region, and a first channel region, the first mesa exhibiting a total extension of less than 100 nm in a lateral direction, and a second mesa in a second cell portion including: a second port region, and a second channel region. A trench structure includes a control electrode structure configured to control the load current by inversion or accumulation. A guidance zone of the second conductivity type is below the second channel region and is displaced from the first and the second channel regions.
    Type: Application
    Filed: December 14, 2018
    Publication date: June 20, 2019
    Inventors: Anton Mauder, Thomas Kuenzig, Franz-Josef Niedernostheide, Christian Philipp Sandow
  • Patent number: 10326009
    Abstract: A power semiconductor transistor includes a trench extending into a semiconductor body along a vertical direction and having first and second trench sidewalls and a trench bottom, an electrode in the trench electrically insulated from the semiconductor body, drift and source regions of a first conductivity type, a semiconductor channel region of a second conductivity type laterally adjacent the first trench sidewall and separating the source and drift regions, and a guidance zone. The guidance zone includes a bar section of the second conductivity type extending along the second trench sidewall or along a sidewall of another trench in the vertical direction to a depth in the semiconductor body deeper than the trench bottom, and a plateau section of the second conductivity type adjoining the bar section and extending under the trench bottom towards the semiconductor channel region. The plateau section has at least one opening below the channel region.
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: June 18, 2019
    Assignee: Infineon Technologies AG
    Inventors: Anton Mauder, Franz-Josef Niedernostheide, Christian Philipp Sandow
  • Publication number: 20190165090
    Abstract: A method of manufacturing a device in a semiconductor body includes forming a first field stop zone portion of a first conductivity type and a drift zone of the first conductivity type on the first field stop zone portion. An average doping concentration of the drift zone is smaller than 80% of that of the first field stop zone portion. The semiconductor body is processed at a first surface and thinned by removing material from a second surface. A second field stop zone portion of the first conductivity type is formed by implanting protons at one or more energies through the second surface. A deepest end-of-range peak of the protons is set in the first field stop zone portion at a vertical distance to a transition between the drift zone and first field stop zone portion in a range from 3 ?m to 60 ?m. The semiconductor body is annealed.
    Type: Application
    Filed: November 28, 2018
    Publication date: May 30, 2019
    Inventors: Hans-Joachim Schulze, Franz-Josef Niedernostheide, Oana Julia Spulber, Stephan Voss
  • Publication number: 20190109188
    Abstract: A power semiconductor device is disclosed. The device includes a semiconductor body coupled to a first load terminal structure and a second load terminal structure, a first cell and a second cell. A first mesa is included in the first cell, the first mesa including: a first port region and a first channel region. A second mesa included in the second cell, the second mesa including a second port region. A third cell is electrically connected to the second load terminal structure and electrically connected to a drift region. The third cell includes a third mesa comprising: a third port region, a third channel region, and a third control electrode.
    Type: Application
    Filed: November 20, 2018
    Publication date: April 11, 2019
    Applicant: Infineon Technologies AG
    Inventors: Anton Mauder, Franz-Josef Niedernostheide, Frank Dieter Pfirsch, Christian Philipp Sandow
  • Publication number: 20190103480
    Abstract: A semiconductor device includes: a drift region formed in a semiconductor substrate; a body region above the drift region; an active gate trench extending from a first main surface and into the body region and including a first electrode coupled to a gate potential; a source region formed in the body region adjacent to the gate trench and coupled to a source potential; a first body trench extending from the first main surface and into the body region and including a second electrode coupled to the source potential; and an inactive gate trench extending from the first main surface and into the body region and including a third electrode coupled to the gate potential. A conductive channel is present along the active gate trench when the gate potential is at an on-voltage, whereas no conductive channel is present along the inactive gate trench for the same gate potential condition.
    Type: Application
    Filed: November 13, 2018
    Publication date: April 4, 2019
    Inventors: Maria Cotorogea, Frank Wolter, Hans-Joachim Schulze, Franz-Josef Niedernostheide, Yvonne Gawlina-Schmidl