Patents by Inventor Fu Chu

Fu Chu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9343620
    Abstract: A method for fabricating a light emitting diode die includes the steps of providing a carrier substrate and forming an epitaxial structure on the carrier substrate including a first type semiconductor layer, a multiple quantum well (MQW) layer on the first type semiconductor layer configured to emit light, and a second type semiconductor layer on the multiple quantum well (MQW) layer. The method also includes the steps of forming a plurality of trenches through the epitaxial structure, forming a reflector layer on the second type semiconductor layer, forming a seed layer on the reflector layer and in the trenches, and forming a substrate on the seed layer having an area configured to protect the epitaxial structure.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: May 17, 2016
    Assignee: SemiLEDS Optoelectronics Co., Ltd.
    Inventors: Jiunn-Yi Chu, Chen-Fu Chu, Chao-Chen Cheng
  • Publication number: 20160020353
    Abstract: The invention discloses a semiconductor structure, processing light signal, the semiconductor structure comprising: a first type semiconductor layer; a second type semiconductor layer; an active layer located between the first type semiconductor layer and the second type semiconductor layer; a reflector covered surfaces of the first type semiconductor layer and the second type semiconductor layer; a first pad disposed on a top surface of the reflector which is covered the first type semiconductor layer; a second pad disposed on the top surface of the reflector or second type semiconductor layer; an aperture disposed on the top surface of the first type semiconductor layer and passed through the reflector; and a light collection module disposed around the aperture or covered a top surface of the reflector.
    Type: Application
    Filed: September 28, 2015
    Publication date: January 21, 2016
    Inventor: Chen-Fu CHU
  • Publication number: 20160002474
    Abstract: A composition includes polymer and dispersed infrared-reflective clusters of titanium dioxide primary particles. The titanium dioxide primary particles are cemented together with precipitated silica and/or alumina to form clusters. The titanium dioxide primary particles have an average particle diameter in the range of from about 0.15 to about 0.35 micron, while the clusters of titanium dioxide primary particles have an average cluster diameter in the range of from about 0.38 to about 5 microns and a geometric standard deviation (GSD) in the range of from about 1.55 to about 2.5.
    Type: Application
    Filed: September 16, 2015
    Publication date: January 7, 2016
    Applicant: Cristal USA Inc.
    Inventors: Fu-Chu WEN, Deborah E. BUSCH, Richard L. FRICKER, Robert PROVINS, Brian David KIESSLING, David Edwin BELL
  • Publication number: 20150362165
    Abstract: The invention discloses a light engine array comprises a multiple light engines arranged into an array, multiple dams located on a first surface of the light engines; and the dams combined a dam array.
    Type: Application
    Filed: June 12, 2015
    Publication date: December 17, 2015
    Inventors: Chen-Fu CHU, Chen-Hsien CHU
  • Publication number: 20150351048
    Abstract: A method for controlling transmission power of a wireless device is provided. A WiFi link is established to a communication device. A data rate of data packets transmitted to the communication device is monitored. Information from the communication device is obtained in response to the transmitted data packets. A transmission power of the wireless device is decreased when the data rate of the data packets reaches a highest data rate and the first information satisfies a specific condition.
    Type: Application
    Filed: August 7, 2015
    Publication date: December 3, 2015
    Applicant: HTC CORPORATION
    Inventors: Chien-Yen LI, Chih-Wen KO, Fu-An CHU, Shau-Hua SHU
  • Publication number: 20150340346
    Abstract: A structure of a semiconductor array comprises multiple semiconductor units, an isolation layer and a decomposed or buffer unit. Multiple semiconductor units combined the semiconductor array. The isolation layer coated each semiconductor unit. The decomposed or buffer unit coated the isolation layer and filled between each semiconductor unit to enhance structure of the semiconductor units. Wherein, the isolation layer protected by edge of the semiconductor units and the decomposed or buffer unit.
    Type: Application
    Filed: May 22, 2015
    Publication date: November 26, 2015
    Inventor: Chen-Fu CHU
  • Patent number: 9137753
    Abstract: A method for controlling transmission power of a wireless device is provided. A WiFi link is established to a communication device. A data rate of data packets transmitted to the communication device is monitored. Information from the communication device is obtained in response to the transmitted data packets. A transmission power of the wireless device is decreased when the data rate of the data packets reaches a highest data rate and the first information satisfies a specific condition.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: September 15, 2015
    Assignee: HTC CORPORATION
    Inventors: Chien-Yen Li, Chih-Wen Ko, Fu-An Chu, Shau-Hua Shu
  • Patent number: 9130114
    Abstract: A vertical light emitting diode (VLED) die includes an epitaxial structure having a first-type confinement layer, an active layer on the first-type confinement layer configured as a multiple quantum well (MQW) configured to emit light, and a second-type confinement layer having a roughened surface. In a first embodiment, the roughened surface includes a pattern of holes with a depth (d) in a major surface thereof surrounded by a pattern of protuberances with a height (h) on the major surface. In a second embodiment, the roughened surface includes a pattern of primary protuberances surrounded by a pattern of secondary protuberances.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: September 8, 2015
    Assignee: SemiLEDS Optoelectronics Co., Ltd.
    Inventors: Chen-Fu Chu, Hao-Chung Cheng, Feng-Hsu Fan, Wen-Huang Liu, Chao-Chen Cheng, David Trung Doan, Yang Po Wen
  • Publication number: 20150065032
    Abstract: A media signal broadcasting method, a media signal broadcasting system, a host device and a peripheral device are provided. The media signal broadcasting method is provided. The media signal broadcasting method includes the following steps. A host device and a peripheral device are provided. A first radio signal is received by the peripheral device. The first radio signal is converted to be a second radio signal by the peripheral device. The second radio signal is transmitted to the host device by the peripheral device. The second radio signal is received and is converted to be a media signal by the host device. A third radio signal is received and converted to be the media signal by the host device. The media signal converted from the third radio signal or the second radio signal is played by the host device.
    Type: Application
    Filed: August 29, 2013
    Publication date: March 5, 2015
    Applicant: HTC CORPORATION
    Inventors: Chih-Hao LIN, Fu-An CHU, Chien-Yen LI
  • Patent number: 8933467
    Abstract: A light emitting diode (LED) system includes a substrate, an application specific integrated circuit (ASIC), and at least one light emitting diode (LED) that includes a Group-III nitride based material such as GaN, InGaN, AlGaN, AlInGaN or other (Ga, In or Al) N-based materials. The light emitting diode (LED) system can also include a polymer lens, and a phosphor layer on the lens or light emitting diode (LED) for producing white light. In addition, multiple light emitting diodes (LEDs) can be mounted on the substrate, and can have different colors for smart color control lighting. The substrate and the application specific integrated circuit (ASIC) are configured to provide an integrated LED circuit having smart functionality. In addition, the substrate is configured to compliment and expand the functions of the application specific integrated circuit (ASIC), and can also include built in integrated circuits for performing additional electrical functions.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: January 13, 2015
    Assignee: SemiLEDS Optoelectronics Co., Ltd.
    Inventors: Trung Tri Doan, Tien Wei Tan, Wen-Huang Liu, Chen-Fu Chu, Yung Wei Chen
  • Patent number: 8921204
    Abstract: A method for fabricating semiconductor dice includes the steps of providing a wafer assembly having a substrate and semiconductor structures on the substrate; and defining the semiconductor dice on the substrate. The method also includes the step of separating the substrate from the semiconductor structures by applying a first laser pulse to each semiconductor die on the substrate having first parameters selected to break an interface between the substrate and the semiconductor structures and then applying a second laser pulse to each semiconductor die on the substrate having second parameters selected to complete separation of the substrate from the semiconductor structures. The method can also include the steps of forming one or more intermediate structures between the semiconductor dice on the substrate configured to protect the semiconductor dice during the separating step.
    Type: Grant
    Filed: July 8, 2013
    Date of Patent: December 30, 2014
    Assignee: SemiLEDS Optoelectronics Co., Ltd.
    Inventors: Chen-Fu Chu, Hao-Chung Cheng, Trung Tri Doan, Feng-Hsu Fan
  • Publication number: 20140366775
    Abstract: A composition includes polymer and dispersed infrared-reflective clusters of titanium dioxide primary particles. The titanium dioxide primary particles are cemented together with precipitated silica and/or alumina to form clusters. The titanium dioxide primary particles have an average particle diameter in the range of from about 0.15 to about 0.35 micron, while the clusters of titanium dioxide primary particles have an average cluster diameter in the range of from about 0.38 to about 5 microns and a geometric standard deviation (GSD) in the range of from about 1.55 to about 2.5.
    Type: Application
    Filed: July 29, 2014
    Publication date: December 18, 2014
    Applicant: Cristal USA Inc.
    Inventors: Fu-Chu Wen, Deborah E. Busch, Richard L. Fricker, Robert Provins, Brian David Kiessling, David Edwin Bell
  • Publication number: 20140339496
    Abstract: A vertical light emitting diode (VLED) die includes an epitaxial structure having a first-type confinement layer, an active layer on the first-type confinement layer configured as a multiple quantum well (MQW) configured to emit light, and a second-type confinement layer having a roughened surface. In a first embodiment, the roughened surface includes a pattern of holes with a depth (d) in a major surface thereof surrounded by a pattern of protuberances with a height (h) on the major surface. In a second embodiment, the roughened surface includes a pattern of primary protuberances surrounded by a pattern of secondary protuberances.
    Type: Application
    Filed: May 16, 2013
    Publication date: November 20, 2014
    Inventors: Chen-FU Chu, Hao-Chun Cheng, Feng-Hsu Fan, Wen-Huang Liu, Chao-Chen Cheng, David Trung Doan, Yang Po Wen
  • Patent number: 8873280
    Abstract: A spin transfer torque random access memory includes a substance unit, a source line unit, an insulation unit, a transistor unit, a MTJ unit, and a bit line unit. The substance unit includes a substance layer. The source line unit includes a plurality of source lines formed inside the substance layer. The transistor unit includes a plurality of transistors respectively disposed on the source lines. Each transistor includes a source region formed on each corresponding source line, a drain region formed above the source region, a channel region formed between the source region and the drain region, and a surrounding gate region surrounding the source region, the drain region, and the channel region. The MTJ unit includes a plurality of MTJ structures respectively disposed on the transistors. The bit line unit includes at least one bit line disposed on the MTJ unit.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: October 28, 2014
    Assignee: Inotera Memories, Inc.
    Inventors: Tzung Han Lee, Chung-Lin Huang, Ron Fu Chu
  • Patent number: 8871547
    Abstract: A method for fabricating a vertical light-emitting diode (VLED) structure includes the steps of providing a carrier substrate, and forming a semiconductor structure on the carrier substrate having a p-type confinement layer, a multiple quantum well (MQW) layer in electrical contact with the p-type confinement layer configured to emit electromagnetic radiation, and an n-type confinement layer in electrical contact with the multiple quantum well (MQW) layer. The method also includes the steps of removing the carrier substrate using a laser pulse to expose an inverted surface of the n-type confinement layer, and forming a metal contact on the surface of the n-type confinement layer.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: October 28, 2014
    Assignee: SemiLEDS Optoelectronics Co., Ltd.
    Inventors: Chen-Fu Chu, Wen-Huang Liu, Jiunn-Yi Chu, Chao-Chen Cheng, Hao-Chun Cheng, Feng-Hsu Fan, Trung Tri Doan
  • Publication number: 20140308807
    Abstract: A method for fabricating a semiconductor memory includes the following steps. Active areas are defined in a substrate. An oxide layer is then formed on the active areas. The oxide layer is subjected to a surface treatment. A first polysilicon layer, a buffer layer and a hard mask are deposited. Recessed access devices are formed in an array region of the substrate. After the recessed access devices are formed, the hard mask and the buffer layer are removed to thereby form transistors in a peripheral region. A second polysilicon layer is deposited on the first polysilicon layer. The first and second polysilicon layers are then etched into a gate structure.
    Type: Application
    Filed: April 10, 2014
    Publication date: October 16, 2014
    Applicant: INOTERA MEMORIES, INC.
    Inventors: Yaw-Wen Hu, Ron Fu Chu, Tzung-Han Lee
  • Patent number: 8828519
    Abstract: A composition includes polymer and dispersed infrared-reflective clusters of titanium dioxide primary particles. The titanium dioxide primary particles are cemented together with precipitated silica and/or alumina to form clusters. The titanium dioxide primary particles have an average particle diameter in the range of from about 0.15 to about 0.35 micron, while the clusters of titanium dioxide primary particles have an average cluster diameter in the range of from about 0.38 to about 5 microns and a geometric standard deviation (GSD) in the range of from about 1.55 to about 2.5.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: September 9, 2014
    Assignee: Cristal USA Inc.
    Inventors: Fu-Chu Wen, Deborah E. Busch, Richard L. Fricker, Robert Provins, Brian David Kiessling, David Edwin Bell
  • Patent number: 8802469
    Abstract: A method for the separation of multiple dies during semiconductor fabrication is described. On an upper surface of a semiconductor wafer containing multiple dies, metal layers are deposited everywhere except where a block of stop electroplating material exists. The stop electroplating material is obliterated, and a barrier layer is formed above the entire remaining structure. A sacrificial metal element is added above the barrier layer, and then the substrate is removed. After the semiconductor material between the individual dies is eradicated, any desired bonding pads and patterned circuitry are added to the semiconductor surface opposite the sacrificial metal element, a passivation layer is added to this surface, and then the sacrificial metal element is removed. Tape is added to the now exposed barrier layer, the passivation layer is removed, the resulting structure is flipped over, and the tape is expanded to separate the individual dies.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: August 12, 2014
    Assignee: SemiLEDS Optoelectronics Co., Ltd.
    Inventors: Chen-Fu Chu, Trung Tri Doan, Hao-Chun Cheng, Feng-Hsu Fan, Fu-Hsien Wang
  • Patent number: 8802465
    Abstract: Systems and methods for fabricating a light emitting diode include forming a multilayer epitaxial structure above a carrier substrate; depositing at least one metal layer above the multilayer epitaxial structure; removing the carrier substrate.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: August 12, 2014
    Assignee: SemiLEDS Optoelectronics Co., Ltd.
    Inventors: Trung Tri Doan, Chen-Fu Chu
  • Patent number: D715234
    Type: Grant
    Filed: September 12, 2013
    Date of Patent: October 14, 2014
    Assignee: SemiLEDs Optoelectronics Co., Ltd.
    Inventors: Hsun-Cheng Chan, Hao-Chun Cheng, Chen-Fu Chu