Patents by Inventor Fu Lin

Fu Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8922004
    Abstract: A work piece includes a copper bump having a top surface and sidewalls. A protection layer is formed on the sidewalls, and not on the top surface, of the copper bump. The protection layer includes a compound of copper and a polymer, and is a dielectric layer.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: December 30, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jing-Cheng Lin, Ya-Hsi Hwung, Hsin-Yu Chen, Po-Hao Tsai, Yan-Fu Lin, Cheng-Lin Huang, Fang Wen Tsai, Wen-Chih Chiou
  • Publication number: 20140374909
    Abstract: A method for filling a trench with a metal layer is disclosed. A deposition apparatus having a plurality of supporting pins is provided. A substrate and a dielectric layer disposed thereon are provided. The dielectric layer has a trench. A first deposition process is performed immediately after the substrate is placed on the supporting pins to form a metal layer in the trench, wherein during the first deposition process a temperature of the substrate is gradually increased to reach a predetermined temperature. When the temperature of the substrate reaches the predetermined temperature, a second deposition process is performed to completely fill the trench with the metal layer. The present invention further provides a semiconductor device having an aluminum layer with a reflectivity greater than 1, wherein the semiconductor device is formed by using the method.
    Type: Application
    Filed: September 9, 2014
    Publication date: December 25, 2014
    Inventors: Chi-Mao Hsu, Hsin-Fu Huang, Min-Chuan Tsai, Chien-Hao Chen, Wei-Yu Chen, Chin-Fu Lin, JING-GANG LI, Min-Hsien Chen, JIAN-HONG SU
  • Publication number: 20140367779
    Abstract: A semiconductor structure includes a fin-shaped structure and a gate. The fin-shaped structure is located in a substrate, wherein the fin-shaped structure has a through hole located right below a vacant part. The gate surrounds the vacant part. Moreover, the present invention also provides a semiconductor process including the following steps for forming said semiconductor structure. A substrate is provided. A fin-shaped structure is formed in the substrate, wherein the fin-shaped structure has a bottom part and a top part. A part of the bottom part is removed to form a vacant part in the corresponding top part, thereby forming the vacant part over a through hole. A gate is formed to surround the vacant part.
    Type: Application
    Filed: June 13, 2013
    Publication date: December 18, 2014
    Inventors: Chin-Cheng Chien, Chun-Yuan Wu, Chin-Fu Lin, Chih-Chien Liu, Chia-Lin Hsu
  • Publication number: 20140370701
    Abstract: A method of fabricating semiconductor patterns includes steps as follows: Firstly, a substrate is provided and has at least a first semiconductor pattern and at least a second semiconductor pattern, wherein a line width of the first semiconductor pattern is identical to a line width of the second semiconductor pattern. Then, a barrier pattern is formed over a surface of the first semiconductor pattern, and the second semiconductor pattern is exposed. Then, a surface portion of the second semiconductor pattern is reacted to form a sacrificial structure layer. Then, the barrier pattern and the sacrificial structure layer are removed, and the line width of the second semiconductor pattern is shrunken to be less than the line width of the first semiconductor pattern. A third semiconductor pattern having a line width can be further provided.
    Type: Application
    Filed: June 13, 2013
    Publication date: December 18, 2014
    Applicant: UNITED MICROELECTRONICS CORPORATION
    Inventors: Chin-Fu Lin, Chih-Chien Liu, Chia-Lin Hsu, Chin-Cheng Chien, Chun-Yuan Wu
  • Publication number: 20140361386
    Abstract: Provided is a semiconductor device including a substrate, a gate structure, a second dielectric layer and a source/drain region. A first dielectric layer is disposed on the substrate, and the first dielectric layer has a trench therein. The gate structure is disposed on the substrate in the trench and includes a work function metal layer and a metal layer. The work function metal layer is disposed in the trench, and includes a TiAl3 phase metal layer. A height of the work function metal layer disposed on a sidewall of the trench is lower than a height of a top surface of the first dielectric layer. The metal layer fills the trench. The second dielectric layer is disposed between the gate structure and the substrate. The source/drain region is disposed in the substrate at two sides of the gate structure.
    Type: Application
    Filed: August 21, 2014
    Publication date: December 11, 2014
    Inventors: Hsin-Fu Huang, Kun-Hsien Lin, Chi-Mao Hsu, Min-Chuan Tsai, Tzung-Ying Lee, Chin-Fu Lin
  • Patent number: 8902239
    Abstract: A video-processing chip capable of saving power is disclosed. The video-processing chip includes a microprocessor, a scalar, a first memory, and a second memory. The microprocessor is used for executing program codes. The scalar is used for adjusting a size of a received image. The first memory is coupled to the microprocessor and to the scalar for providing memory space to the scalar for image processing. The second memory is coupled to the microprocessor for storing the program codes of the microprocessor for controlling a power switch. Wherein a size of the first memory is greater than a size of the second memory.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: December 2, 2014
    Assignee: Princeton Technology Corporation
    Inventors: Meng-Fu Lin, Ying-Yuan Tang, Wei-Chih Huang
  • Publication number: 20140346616
    Abstract: A semiconductor structure includes a work function metal layer, a (work function) metal oxide layer and a main electrode. The work function metal layer is located on a substrate. The (work function) metal oxide layer is located on the work function metal layer. The main electrode is located on the (work function) metal oxide layer. A semiconductor process forming said semiconductor structure is also provided.
    Type: Application
    Filed: August 8, 2014
    Publication date: November 27, 2014
    Inventors: Min-Chuan Tsai, Hsin-Fu Huang, Chi-Mao Hsu, Chin-Fu Lin, Chien-Hao Chen, Wei-Yu Chen, Chi-Yuan Sun, Ya-Hsueh Hsieh, Tsun-Min Cheng
  • Publication number: 20140350924
    Abstract: A device performs a method for using image data to aid voice recognition. The method includes the device capturing image data of a vicinity of the device and adjusting, based on the image data, a set of parameters for voice recognition performed by the device. The set of parameters for the device performing voice recognition include, but are not limited to: a trigger threshold of a trigger for voice recognition; a set of beamforming parameters; a database for voice recognition; and/or an algorithm for voice recognition, wherein the algorithm can include using noise suppression or using acoustic beamforming.
    Type: Application
    Filed: January 27, 2014
    Publication date: November 27, 2014
    Applicant: Motorola Mobility LLC
    Inventors: Robert A. Zurek, Adrian M. Schuster, Fu-Lin Shau, Jincheng Wu
  • Patent number: 8895366
    Abstract: A semiconductor package and a fabrication method thereof are disclosed. The fabrication method includes the steps of providing a semiconductor chip having an active surface and a non-active surface opposing to the active surface, roughening a peripheral portion of the non-active surface so as to divide the non-active surface into the peripheral portion formed with a roughened structure and a non-roughened central portion, mounting the semiconductor chip on a chip carrier via a plurality of solder bumps formed on the active surface, forming an encapsulant on the chip carrier to encapsulate the semiconductor chip. The roughened structure formed on the peripheral portion of the non-active surface of the semiconductor chip can reinforce the bonding between the semiconductor chip and the encapsulant, and the non-roughened central portion of the non-active surface of the semiconductor chip can maintain the structural strength of the semiconductor chip.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: November 25, 2014
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Wen-Home Huang, Wen-Tsung Tseng, Chang-Fu Lin, Ho-Yi Tsai, Cheng-Hsu Hsiao
  • Patent number: 8896367
    Abstract: The charge pump system includes a clock generator, a boosting unit determination device, a charge pump circuit, and a voltage regulator. The clock generator is used for generating a clock group. The boosting unit determination device is used for generating a number control signal. The charge pump circuit is used for receiving an operating voltage, the number control signal and the clock group, and generating an output voltage. The charge pump circuit includes plural boosting units. A first portion of the plural boosting units are controlled by the clock group according to the number control signal. The operating voltage is converted into an output voltage by the first portion of the plural boosting units. The voltage regulator is used for receiving the output voltage and converting the output voltage into a specified regulated voltage.
    Type: Grant
    Filed: July 18, 2013
    Date of Patent: November 25, 2014
    Assignee: eMemory Technology Inc.
    Inventor: Chun-Fu Lin
  • Publication number: 20140332824
    Abstract: A semiconductor structure for forming FinFETs is described. The semiconductor structure includes a semiconductor substrate, a plurality of odd fins of the FinFETs on the substrate, and a plurality of even fins of the FinFETs on the substrate between the odd fins of the FinFETs. The odd fins of the FinFETs are defined from the substrate. The even fins of the FinFETs are different from the odd fins of the FinFETs in at least one of the width and the material, and may be further different from the odd fins of the FinFETs in the height.
    Type: Application
    Filed: July 24, 2014
    Publication date: November 13, 2014
    Inventors: Chin-Fu Lin, Chin-Cheng Chien, Chun-Yuan Wu, Teng-Chun Tsai, Chih-Chien Liu
  • Patent number: 8884398
    Abstract: A method of programming an anti-fuse includes steps as follows. First, an insulating layer is provided. An anti-fuse region is defined on the insulating layer. An anti-fuse is embedded within the anti-fuse region of the insulating layer. The anti-fuse includes at least a first conductor and a second conductor. Then, part of the insulating layer is removed by a laser to form an anti-fuse opening in the insulating layer. Part of the first conductor and part of the second conductor are exposed through the anti-fuse opening. After that, a under bump metallurgy layer is formed in the anti-fuse opening to connect the first conductor and the second conductor electrically.
    Type: Grant
    Filed: April 1, 2013
    Date of Patent: November 11, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Chu-Fu Lin, Chien-Li Kuo, Ching-Li Yang
  • Patent number: 8879617
    Abstract: A method and a circuit for controlling an equalizer and an equalizing system are disclosed. The method includes providing a first level from a set of levels as a peaking level of the equalizer; equalizing a transmission signal by using the equalizer with the first level to obtain a first signal; providing a second level from the set of levels as the peaking level of the equalizer; equalizing the transmission signal by using the equalizer with the second level to obtain a second signal; determining a first frequency of the first signal; determining a second frequency of the second signal; comparing the first frequency and second frequency to obtain a comparing result; and determining the peaking level of the equalizer for following equalization of the transmission signal in accordance with the comparing result.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: November 4, 2014
    Assignee: Himax Technologies Limited
    Inventor: Jin-Fu Lin
  • Patent number: 8860150
    Abstract: The metal gate structure of the present invention can include a TiN complex, and the N/Ti proportion of the TiN complex is decreased from bottom to top. In one embodiment, the TiN complex can include a single TiN layer, which has an N/Ti proportion gradually decreasing from bottom to top. In another embodiment, the TiN complex can include a plurality of TiN layers stacking together. In such a case, the lowest TiN layer has a higher N/Ti proportion than the adjusted TiN layer.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: October 14, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Chin-Fu Lin, Nien-Ting Ho, Chun-Hsien Lin, Chih-Hao Yu, Cheng-Hsien Chou
  • Patent number: 8860135
    Abstract: A method for filling a trench with a metal layer is disclosed. A deposition apparatus having a plurality of supporting pins is provided. A substrate and a dielectric layer disposed thereon are provided. The dielectric layer has a trench. A first deposition process is performed immediately after the substrate is placed on the supporting pins to form a metal layer in the trench, wherein during the first deposition process a temperature of the substrate is gradually increased to reach a predetermined temperature. When the temperature of the substrate reaches the predetermined temperature, a second deposition process is performed to completely fill the trench with the metal layer. The present invention further provides a semiconductor device having an aluminum layer with a reflectivity greater than 1, wherein the semiconductor device is formed by using the method.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: October 14, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Chi-Mao Hsu, Hsin-Fu Huang, Min-Chuan Tsai, Chien-Hao Chen, Wei-Yu Chen, Chin-Fu Lin, Jing-Gang Li, Min-Hsien Chen, Jian-Hong Su
  • Publication number: 20140291801
    Abstract: A method of programming an anti-fuse includes steps as follows. First, an insulating layer is provided. An anti-fuse region is defined on the insulating layer. An anti-fuse is embedded within the anti-fuse region of the insulating layer. The anti-fuse includes at least a first conductor and a second conductor. Then, part of the insulating layer is removed by a laser to form an anti-fuse opening in the insulating layer. Part of the first conductor and part of the second conductor are exposed through the anti-fuse opening. After that, a under bump metallurgy layer is formed in the anti-fuse opening to connect the first conductor and the second conductor electrically.
    Type: Application
    Filed: April 1, 2013
    Publication date: October 2, 2014
    Inventors: Chu-Fu Lin, Chien-Li Kuo, Ching-Li Yang
  • Patent number: 8847146
    Abstract: The present invention discloses an image sensor package structure. The image sensor package structure includes a substrate, a chip, a transparent lid, a first casing and a package material. The transparent lid covers a sensitization area of the chip and it also adheres to the chip which is deposed on the substrate. The first casing, which adheres to the transparent lid, forms an opening so that light can pass through the opening and the transparent lid to enter into the sensitization area. The package material covers around the chip and the transparent lid and fills between the substrate and the first casing. Because of the arrangement of adhesive layers placed between the first casing and the transparent lid and between the transparent lid and the chip, the blockage area from moisture is elongated. Therefore, the reliability of the image sensor package structure can be enhanced.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: September 30, 2014
    Assignee: Kingpak Technology Inc.
    Inventors: Hsiu-Wen Tu, Ren-Long Kuo, Young-Houng Shiao, Tsao-Pin Chen, Mon-Nan Ho, Chih-Cheng Hsu, Chin-Fu Lin, Chung-Hsien Hsin
  • Patent number: 8847325
    Abstract: A fin field-effect transistor structure comprises a substrate, a fin channel, a source/drain region, a high-k metal gate and a plurality of slot contact structures. The fin channel is formed on the substrate. The source/drain region is formed in the fin channel. The high-k metal gate formed on the substrate and the fin channel comprises a high-k dielectric layer and a metal gate layer, wherein the high-k dielectric layer is arranged between the metal gate layer and the fin channel. The slot contact structures are disposed at both sides of the metal gate.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: September 30, 2014
    Assignee: United Microelectronics Corporation
    Inventors: Teng-Chun Tsai, Chun-Yuan Wu, Chin-Fu Lin, Chih-Chien Liu, Chin-Cheng Chien
  • Patent number: 8841733
    Abstract: A method of fabricating a semiconductor device includes following steps. A substrate is provided, wherein a first dielectric layer having a trench therein is formed on the substrate, a source/drain region is formed in the substrate at two sides of the trench, and a second dielectric layer is formed on the substrate in the trench. A first physical vapor deposition process is performed to form a Ti-containing metal layer in the trench. A second physical vapor deposition process is performed to form an Al layer on the Ti-containing metal layer in the trench. A thermal process is performed to anneal the Ti-containing metal layer and the Al layer so as to form a work function metal layer. A metal layer is formed to fill the trench.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: September 23, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Hsin-Fu Huang, Kun-Hsien Lin, Chi-Mao Hsu, Min-Chuan Tsai, Tzung-Ying Lee, Chin-Fu Lin
  • Patent number: D716957
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: November 4, 2014
    Assignee: Plus Meditech Co., Ltd.
    Inventors: Yueh-Hua Chiang, Fu-Lin Chuang, Chien-Min Fang