Patents by Inventor Fu-Yu Tsai

Fu-Yu Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240332066
    Abstract: A semiconductor structure includes a substrate; a first dielectric layer on the substrate; an etch stop layer on the first dielectric layer; a second dielectric layer on the etch stop layer; a first conductor and a second conductor in the second dielectric layer, an air gap in the second dielectric layer and between the first conductor and the second conductor; and a low-polarity dielectric layer on a sidewall surface of the second dielectric layer within the air gap.
    Type: Application
    Filed: April 20, 2023
    Publication date: October 3, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Da-Jun Lin, Chih-Wei Chang, Fu-Yu Tsai, Bin-Siang Tsai
  • Publication number: 20240326021
    Abstract: The present invention provides a catalyst structure for oxidizing hydrogen in the air, comprising: a base and a catalyst layer, wherein the base comprises a first surface, the catalyst layer is disposed on the first surface of the base, and the catalyst layer comprises: a carbon carrier, multiple catalyst particles, and a fluorinated polymer; wherein the multiple catalyst particles are disposed on a surface of the carbon carrier, and the carbon carrier adheres to the first surface through the fluorinated polymer. The present invention further provides a device for oxidizing hydrogen, comprising: the catalyst structure and a shell, and the shell comprises an accommodation space, a first air flow part and a second air flow part in gas communication with each other; wherein the catalyst structure is disposed in the accommodation space and is between the first air flow part and the second air flow part.
    Type: Application
    Filed: November 29, 2023
    Publication date: October 3, 2024
    Inventors: Ming-Yu YEN, Ya-Ting TSAI, Fu-Yang SHIH, Hsu-Lin CHANG
  • Patent number: 12108691
    Abstract: A memory device and a manufacturing method thereof are provided. The memory device includes a device substrate, a resistance variable layer and a top electrode. The bottom electrode is disposed on the device substrate. The resistance variable layer is disposed on the bottom electrode. The top electrode is disposed on the resistance variable layer. The bottom electrode is formed with a tensile stress, while the top electrode is formed with a compressive stress.
    Type: Grant
    Filed: May 26, 2023
    Date of Patent: October 1, 2024
    Assignee: United Microelectronics Corp.
    Inventors: Chich-Neng Chang, Da-Jun Lin, Shih-Wei Su, Fu-Yu Tsai, Bin-Siang Tsai
  • Publication number: 20240290731
    Abstract: A warpage-reducing semiconductor structure includes a wafer. The wafer includes a front side and a back side. Numerous semiconductor elements are disposed at the front side. A silicon oxide layer is disposed at the back side. A UV-transparent silicon nitride layer covers and contacts the silicon oxide layer. The refractive index of the UV-transparent silicon nitride layer is between 1.55 and 2.10.
    Type: Application
    Filed: May 9, 2024
    Publication date: August 29, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Da-Jun Lin, Chin-Chia Yang, Tai-Cheng Hou, Fu-Yu Tsai, Bin-Siang Tsai
  • Patent number: 12069960
    Abstract: The invention provides a semiconductor structure, the semiconductor structure includes a dielectric layer, a plurality of MTJ stacked elements and at least one dummy MTJ stacked element located in the dielectric layer, a first nitride layer covering at least the sidewalls of the MTJ stacked elements and the dummy MTJ stacked elements, a second nitride layer covering the top surfaces of the dummy MTJ stacked elements, the thickness of the second nitride layer is greater than the thickness of the first nitride layer, and a plurality of contact structures located in the dielectric layer and electrically connected with each MTJ stacked element.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: August 20, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Da-Jun Lin, Ching-Hua Hsu, Fu-Yu Tsai, Bin-Siang Tsai
  • Publication number: 20240243057
    Abstract: An integrated circuit includes a substrate, an interconnection layer, an insulation layer, a metal bump structure, and a metal-insulator-metal capacitor. The interconnection layer is disposed above the substrate. The interconnection layer includes an interlayer dielectric layer and an interconnection structure disposed in the interlayer dielectric layer. The insulation layer is disposed on the interconnection layer, the metal bump structure is disposed on the insulation layer, and the metal-insulator-metal capacitor is disposed conformally on the metal bump structure and the insulation layer. A manufacturing method of the integrated circuit includes the following steps. The interconnection layer is formed above the substrate. The insulation layer is formed on the interconnection layer, the metal bump structure is formed on the insulation layer, and the metal-insulator-metal capacitor is formed conformally on the metal bump structure and the insulation layer.
    Type: Application
    Filed: March 22, 2023
    Publication date: July 18, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Da-Jun Lin, Bin-Siang Tsai, Fu-Yu Tsai
  • Publication number: 20240213304
    Abstract: An MIM capacitor structure includes numerous inter-metal dielectrics. A trench is embedded within the inter-metal dielectrics. A capacitor is disposed within the trench. The capacitor includes a first electrode layer, a capacitor dielectric layer and a second electrode layer. The first electrode layer, the capacitor dielectric layer and the second electrode layer fill in and surround the trench. The capacitor dielectric layer is between the first electrode layer and the second electrode layer. A silicon oxide liner surrounds a sidewall of the trench and contacts the first electrode layer.
    Type: Application
    Filed: February 9, 2023
    Publication date: June 27, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Da-Jun Lin, Bin-Siang Tsai, Fu-Yu Tsai, Chung-Yi Chiu
  • Patent number: 12014995
    Abstract: A warpage-reducing semiconductor structure includes a wafer. The wafer includes a front side and a back side. Numerous semiconductor elements are disposed at the front side. A silicon oxide layer is disposed at the back side. A UV-transparent silicon nitride layer covers and contacts the silicon oxide layer. The refractive index of the UV-transparent silicon nitride layer is between 1.55 and 2.10.
    Type: Grant
    Filed: July 7, 2021
    Date of Patent: June 18, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Da-Jun Lin, Chin-Chia Yang, Tai-Cheng Hou, Fu-Yu Tsai, Bin-Siang Tsai
  • Patent number: 12016250
    Abstract: An MRAM structure includes a dielectric layer. A first MRAM, a second MRAM and a third MRAM are disposed on the dielectric layer, wherein the second MRAM is disposed between the first MRAM and the third MRAM, and the second MRAM includes an MTJ. Two gaps are respectively disposed between the first MRAM and the second MRAM and between the second MRAM and the third MRAM. Two tensile stress pieces are respectively disposed in each of the two gaps. A first compressive stress layer surrounds and contacts the sidewall of the MTJ entirely. A second compressive stress layer covers the openings of each of the gaps and contacts the two tensile material pieces.
    Type: Grant
    Filed: April 20, 2022
    Date of Patent: June 18, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Da-Jun Lin, Min-Hua Tsai, Tai-Cheng Hou, Fu-Yu Tsai, Bin-Siang Tsai
  • Publication number: 20240162208
    Abstract: A structure with a photodiode, an HEMT and an SAW device includes a photodiode and an HEMT. The photodiode includes a first electrode and a second electrode. The first electrode contacts a P-type III-V semiconductor layer. The second electrode contacts an N-type III-V semiconductor layer. The HEMT includes a P-type gate disposed on an active layer. A gate electrode is disposed on the P-type gate. Two source/drain electrodes are respectively disposed at two sides of the P-type gate. Schottky contact is between the first electrode and the P-type III-V semiconductor layer, and between the gate electrode and the P-type gate. Ohmic contact is between the second electrode and the first N-type III-V semiconductor layer, and between one of the two source/drain electrodes and the active layer and between the other one of two source/drain electrodes and the active layer.
    Type: Application
    Filed: December 7, 2022
    Publication date: May 16, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Da-Jun Lin, Chih-Wei Chang, Fu-Yu Tsai, Bin-Siang Tsai, Chung-Yi Chiu
  • Publication number: 20240081154
    Abstract: A method for fabricating a semiconductor device includes the steps of: providing a substrate, wherein the substrate comprises a MRAM region and a logic region; forming a magnetic tunneling junction (MTJ) on the MRAM region; forming a top electrode on the MTJ; and then performing a flowable chemical vapor deposition (FCVD) process to form a first inter-metal dielectric (IMD) layer around the top electrode and the MTJ.
    Type: Application
    Filed: November 8, 2023
    Publication date: March 7, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Tai-Cheng Hou, Fu-Yu Tsai, Bin-Siang Tsai, Da-Jun Lin, Chau-Chung Hou, Wei-Xin Gao
  • Patent number: 11871677
    Abstract: A method for fabricating a semiconductor device includes the steps of: providing a substrate, wherein the substrate comprises a MRAM region and a logic region; forming a magnetic tunneling junction (MTJ) on the MRAM region; forming a top electrode on the MTJ; and then performing a flowable chemical vapor deposition (FCVD) process to form a first inter-metal dielectric (IMD) layer around the top electrode and the MTJ.
    Type: Grant
    Filed: February 22, 2021
    Date of Patent: January 9, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Tai-Cheng Hou, Fu-Yu Tsai, Bin-Siang Tsai, Da-Jun Lin, Chau-Chung Hou, Wei-Xin Gao
  • Publication number: 20230403946
    Abstract: A method for fabricating semiconductor device includes first forming a first magnetic tunneling junction (MTJ) and a second MTJ on a substrate, performing an atomic layer deposition (ALD) process or a high-density plasma (HDP) process to form a passivation layer on the first MTJ and the second MTJ, performing an etching process to remove the passivation layer adjacent to the first MTJ and the second MTJ, and then forming an ultra low-k (ULK) dielectric layer on the passivation layer.
    Type: Application
    Filed: August 28, 2023
    Publication date: December 14, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Tai-Cheng Hou, Wei-Xin Gao, Fu-Yu Tsai, Chin-Yang Hsieh, Chen-Yi Weng, Jing-Yin Jhang, Bin-Siang Tsai, Kun-Ju Li, Chih-Yueh Li, Chia-Lin Lu, Chun-Lung Chen, Kun-Yuan Laio, Yu-Tsung Lai, Wei-Hao Huang
  • Publication number: 20230378275
    Abstract: A semiconductor device includes a III-V compound semiconductor layer, a silicon-doped III-V compound barrier layer, and a silicon-rich tensile stress layer. The silicon-doped III-V compound barrier layer is disposed on the III-V compound semiconductor layer, and the silicon-rich tensile stress layer is disposed on the silicon-doped III-V compound barrier layer. A manufacturing method of a semiconductor device includes the following steps. A III-V compound barrier layer is formed on a III-V compound semiconductor layer. A silicon-rich tensile stress layer is formed on the III-V compound barrier layer. An annealing process is performed after the silicon-rich tensile stress layer is formed. A part of silicon in the silicon-rich tensile stress layer diffuses into the III-V compound barrier layer for forming a silicon-doped III-V compound barrier layer by the annealing process.
    Type: Application
    Filed: June 21, 2022
    Publication date: November 23, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Da-Jun Lin, Fu-Yu Tsai, Bin-Siang Tsai, Chung-Yi Chiu
  • Publication number: 20230377952
    Abstract: A gallium nitride (GaN) device with field plate structure, including a substrate, a gate on the substrate and a passivation layer covering on the gate, a source and a drain on the substrate and the passivation layer, a stop layer on the source, the drain and the passivation layer, and dual-damascene interconnects connecting respectively with the source and the drain, wherein the dual-damascene interconnect is provided with a via portion under the stop layer and a trench portion on the stop layer, and the via portion is connected with the source or the drain, and the trench portion of one of the dual-damascene interconnects extends horizontally toward the drain and overlaps the gate below in vertical direction, thereby functioning as a field plate structure for the GaN device.
    Type: Application
    Filed: June 9, 2022
    Publication date: November 23, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Da-Jun Lin, Fu-Yu Tsai, Bin-Siang Tsai, Chung-Yi Chiu
  • Publication number: 20230378313
    Abstract: A manufacturing method of a semiconductor device includes the following steps. A gate structure is formed on a III-V compound semiconductor layer. A gate silicide layer and a source/drain silicide layer are formed by an anneal process. The gate silicide layer is formed on the gate structure, the source/drain silicide layer is formed on the III-V compound semiconductor layer, and a material composition of the gate silicide layer is different from a material composition of the source/drain silicide layer.
    Type: Application
    Filed: June 12, 2022
    Publication date: November 23, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Da-Jun Lin, Fu-Yu Tsai, Bin-Siang Tsai, Chung-Yi Chiu
  • Publication number: 20230369436
    Abstract: A method for forming ohmic contacts on a compound semiconductor device is disclosed. A channel layer is formed on a substrate. A barrier layer is formed on the channel layer. A passivation layer is formed on the barrier layer. A contact area is formed by etching through the passivation layer and the barrier layer. The channel layer is partially exposed at a bottom of the contact area. A sacrificial metallic layer is conformally deposited on the contact area. The sacrificial metallic layer is subjected to an annealing process, thereby forming a heavily doped region in the channel layer directly under the sacrificial metallic layer. The sacrificial metallic layer is removed to expose the heavily doped region. A metal silicide layer is formed on the heavily doped region.
    Type: Application
    Filed: June 10, 2022
    Publication date: November 16, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Da-Jun Lin, Fu-Yu Tsai, Bin-Siang Tsai, Chung-Yi Chiu
  • Publication number: 20230369435
    Abstract: A compound semiconductor device includes a substrate, a channel layer on the substrate, a barrier layer on the channel layer, a passivation layer on the barrier layer, and a contact area recessed into the passivation layer and the barrier layer. The channel layer is partially exposed at a bottom of the contact area. A bi-layer silicide film is disposed on the contact area. A copper contact is disposed on the bi-layer silicide film.
    Type: Application
    Filed: June 8, 2022
    Publication date: November 16, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Da-Jun Lin, Fu-Yu Tsai, Bin-Siang Tsai, Chung-Yi Chiu
  • Publication number: 20230361067
    Abstract: A semiconductor structure including a first substrate, a first dielectric layer, a first oxygen doped carbide (ODC) bonding layer, a second substrate, a second dielectric layer, and a second ODC bonding layer is provided. The first dielectric layer is located on the first substrate. The first ODC bonding layer is located on the first dielectric layer. The second dielectric layer is located on the second substrate. The second ODC bonding layer is located on the second dielectric layer. The first ODC bonding layer and the second ODC bonding layer are bonded to each other.
    Type: Application
    Filed: May 3, 2022
    Publication date: November 9, 2023
    Applicant: United Microelectronics Corp.
    Inventors: Chin-Chia Yang, Da-Jun Lin, Fu-Yu Tsai, Bin-Siang Tsai
  • Publication number: 20230354715
    Abstract: A semiconductor device includes a first magnetic tunneling junction (MTJ) and a second MTJ on a substrate, a passivation layer on the first MTJ and the second MTJ, and an ultra low-k (ULK) dielectric layer on the passivation layer. Preferably, a top surface of the passivation layer between the first MTJ and the second MTJ is lower than a top surface of the passivation layer directly on top of the first MTJ.
    Type: Application
    Filed: June 27, 2023
    Publication date: November 2, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Tai-Cheng Hou, Wei-Xin Gao, Fu-Yu Tsai, Chin-Yang Hsieh, Chen-Yi Weng, Jing-Yin Jhang, Bin-Siang Tsai, Kun-Ju Li, Chih-Yueh Li, Chia-Lin Lu, Chun-Lung Chen, Kun-Yuan Liao, Yu-Tsung Lai, Wei-Hao Huang