Patents by Inventor Fu-Yu Tsai

Fu-Yu Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11723215
    Abstract: A method for fabricating a semiconductor device includes the steps of first forming a magnetic tunneling junction (MTJ) on a substrate, forming a top electrode on the MTJ, forming an inter-metal dielectric (IMD) layer around the top electrode and the MTJ, forming a landing layer on the IMD layer and the MTJ, and then patterning the landing layer to form a landing pad. Preferably, the landing pad is disposed on the top electrode and the IMD layer adjacent to one side of the top electrode.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: August 8, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Da-Jun Lin, Yi-An Shih, Bin-Siang Tsai, Fu-Yu Tsai
  • Patent number: 11707003
    Abstract: A memory device and a manufacturing method thereof are provided. The memory device includes a device substrate, a resistance variable layer and a top electrode. The bottom electrode is disposed on the device substrate. The resistance variable layer is disposed on the bottom electrode. The top electrode is disposed on the resistance variable layer. The bottom electrode is formed with a tensile stress, while the top electrode is formed with a compressive stress.
    Type: Grant
    Filed: January 4, 2021
    Date of Patent: July 18, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chich-Neng Chang, Da-Jun Lin, Shih-Wei Su, Fu-Yu Tsai, Bin-Siang Tsai
  • Patent number: 11706993
    Abstract: A method for fabricating semiconductor device includes the steps of: forming a first magnetic tunneling junction (MTJ) on a substrate; forming a first ultra low-k (ULK) dielectric layer on the first MTJ; performing a first etching process to remove part of the first ULK dielectric layer and forming a damaged layer on the first ULK dielectric layer; and forming a second ULK dielectric layer on the damaged layer.
    Type: Grant
    Filed: December 27, 2020
    Date of Patent: July 18, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Tai-Cheng Hou, Wei-Xin Gao, Fu-Yu Tsai, Chin-Yang Hsieh, Chen-Yi Weng, Jing-Yin Jhang, Bin-Siang Tsai, Kun-Ju Li, Chih-Yueh Li, Chia-Lin Lu, Chun-Lung Chen, Kun-Yuan Liao, Yu-Tsung Lai, Wei-Hao Huang
  • Publication number: 20230200088
    Abstract: A semiconductor device includes a first magnetic tunneling junction (MTJ) and a second MTJ on a substrate, a first ultra low-k (ULK) dielectric layer on the first MTJ and the second MTJ, a passivation layer on the first ULK dielectric layer, and a second ULK dielectric layer on the passivation layer.
    Type: Application
    Filed: February 23, 2023
    Publication date: June 22, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Kun-Ju Li, Tai-Cheng Hou, Hsin-Jung Liu, Fu-Yu Tsai, Bin-Siang Tsai, Chau-Chung Hou, Yu-Lung Shih, Ang Chan, Chih-Yueh Li, Chun-Tsen Lu
  • Patent number: 11676920
    Abstract: A method for fabricating a semiconductor device includes the steps of first forming an aluminum (Al) pad on a substrate, forming a passivation layer on the substrate and an opening exposing the Al pad, forming a cobalt (Co) layer in the opening and on the Al pad, bonding a wire onto the Co layer, and then performing a thermal treatment process to form a Co—Pd alloy on the Al pad.
    Type: Grant
    Filed: January 26, 2021
    Date of Patent: June 13, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Da-Jun Lin, Bin-Siang Tsai, Fu-Yu Tsai
  • Publication number: 20230157180
    Abstract: A method for fabricating a semiconductor device includes the steps of forming a magnetic tunneling junction (MTJ) on a substrate, forming a first inter-metal dielectric (IMD) layer on the MTJ, removing part of the first IMD layer to form a damaged layer on the MTJ and a trench exposing the damaged layer, performing a ultraviolet (UV) curing process on the damaged layer, and then conducting a planarizing process to remove the damaged layer and part of the first IMD layer.
    Type: Application
    Filed: December 12, 2021
    Publication date: May 18, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Tai-Cheng Hou, Chau-Chung Hou, Da-Jun Lin, Wei-Xin Gao, Fu-Yu Tsai, Bin-Siang Tsai
  • Patent number: 11621296
    Abstract: A method for fabricating semiconductor device includes the steps of: forming a first magnetic tunneling junction (MTJ) and a second MTJ on a substrate; forming a first top electrode on the first MTJ and a second top electrode on the second MTJ; forming a first ultra low-k (ULK) dielectric layer on the first MTJ and the second MTJ; forming a passivation layer on the first ULK dielectric layer, wherein a bottom surface of the passivation layer between the first MTJ and the second MTJ is lower than a top surface of the first MTJ; and forming a second ULK dielectric layer on the passivation layer.
    Type: Grant
    Filed: April 6, 2021
    Date of Patent: April 4, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Kun-Ju Li, Tai-Cheng Hou, Hsin-Jung Liu, Fu-Yu Tsai, Bin-Siang Tsai, Chau-Chung Hou, Yu-Lung Shih, Ang Chan, Chih-Yueh Li, Chun-Tsen Lu
  • Patent number: 11605777
    Abstract: An MRAM structure includes a dielectric layer. A first MRAM, a second MRAM and a third MRAM are disposed on the dielectric layer, wherein the second MRAM is disposed between the first MRAM and the third MRAM, and the second MRAM includes an MTJ. Two gaps are respectively disposed between the first MRAM and the second MRAM and between the second MRAM and the third MRAM. Two tensile stress pieces are respectively disposed in each of the two gaps. A first compressive stress layer surrounds and contacts the sidewall of the MTJ entirely. A second compressive stress layer covers the openings of each of the gaps and contacts the two tensile stress pieces.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: March 14, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Da-Jun Lin, Min-Hua Tsai, Tai-Cheng Hou, Fu-Yu Tsai, Bin-Siang Tsai
  • Publication number: 20220406994
    Abstract: The invention provides a semiconductor structure, the semiconductor structure includes a dielectric layer, a plurality of MTJ stacked elements and at least one dummy MTJ stacked element located in the dielectric layer, a first nitride layer covering at least the sidewalls of the MTJ stacked elements and the dummy MTJ stacked elements, a second nitride layer covering the top surfaces of the dummy MTJ stacked elements, the thickness of the second nitride layer is greater than the thickness of the first nitride layer, and a plurality of contact structures located in the dielectric layer and electrically connected with each MTJ stacked element.
    Type: Application
    Filed: July 15, 2021
    Publication date: December 22, 2022
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Da-Jun Lin, Ching-Hua Hsu, Fu-Yu Tsai, Bin-Siang Tsai
  • Publication number: 20220392850
    Abstract: A warpage-reducing semiconductor structure includes a wafer. The wafer includes a front side and a back side. Numerous semiconductor elements are disposed at the front side. A silicon oxide layer is disposed at the back side. A UV-transparent silicon nitride layer covers and contacts the silicon oxide layer. The refractive index of the UV-transparent silicon nitride layer is between 1.55 and 2.10.
    Type: Application
    Filed: July 7, 2021
    Publication date: December 8, 2022
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Da-Jun Lin, Chin-Chia Yang, Tai-Cheng Hou, Fu-Yu Tsai, Bin-Siang Tsai
  • Patent number: 11462513
    Abstract: A chip bonding alignment structure includes a semiconductor chip, a metal layer, an etching stop layer, at least one metal bump, a dielectric barrier layer, a silicon oxide layer, and a silicon carbonitride layer. The metal layer is disposed on a bonding surface of the semiconductor chip and has a metal alignment pattern. The etching stop layer covers the bonding surface and the metal layer. The metal bump extends upward from the metal layer and penetrates through the etching stop layer. The dielectric barrier layer covers the etching stop layer and the metal bump. The silicon oxide layer covers the dielectric barrier layer. The silicon carbonitride layer covers the silicon oxide layer.
    Type: Grant
    Filed: February 22, 2021
    Date of Patent: October 4, 2022
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chin-Chia Yang, Fu-Yu Tsai, Da-Jun Lin, Bin-Siang Tsai
  • Publication number: 20220246839
    Abstract: An MRAM structure includes a dielectric layer. A first MRAM, a second MRAM and a third MRAM are disposed on the dielectric layer, wherein the second MRAM is disposed between the first MRAM and the third MRAM, and the second MRAM includes an MTJ. Two gaps are respectively disposed between the first MRAM and the second MRAM and between the second MRAM and the third MRAM. Two tensile stress pieces are respectively disposed in each of the two gaps. A first compressive stress layer surrounds and contacts the sidewall of the MTJ entirely. A second compressive stress layer covers the openings of each of the gaps and contacts the two tensile material pieces.
    Type: Application
    Filed: April 20, 2022
    Publication date: August 4, 2022
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Da-Jun Lin, Min-Hua Tsai, Tai-Cheng Hou, Fu-Yu Tsai, Bin-Siang Tsai
  • Publication number: 20220238468
    Abstract: A method for fabricating a semiconductor device includes the steps of first forming an aluminum (Al) pad on a substrate, forming a passivation layer on the substrate and an opening exposing the Al pad, forming a cobalt (Co) layer in the opening and on the Al pad, bonding a wire onto the Co layer, and then performing a thermal treatment process to form a Co—Pd alloy on the Al pad.
    Type: Application
    Filed: January 26, 2021
    Publication date: July 28, 2022
    Inventors: Da-Jun Lin, Bin-Siang Tsai, Fu-Yu Tsai
  • Publication number: 20220238800
    Abstract: A method for fabricating a semiconductor device includes the steps of: providing a substrate, wherein the substrate comprises a MRAM region and a logic region; forming a magnetic tunneling junction (MTJ) on the MRAM region; forming a top electrode on the MTJ; and then performing a flowable chemical vapor deposition (FCVD) process to form a first inter-metal dielectric (IMD) layer around the top electrode and the MTJ.
    Type: Application
    Filed: February 22, 2021
    Publication date: July 28, 2022
    Inventors: Tai-Cheng Hou, Fu-Yu Tsai, Bin-Siang Tsai, Da-Jun Lin, Chau-Chung Hou, Wei-Xin Gao
  • Publication number: 20220208727
    Abstract: A chip bonding alignment structure includes a semiconductor chip, a metal layer, an etching stop layer, at least one metal bump, a dielectric barrier layer, a silicon oxide layer, and a silicon carbonitride layer. The metal layer is disposed on a bonding surface of the semiconductor chip and has a metal alignment pattern. The etching stop layer covers the bonding surface and the metal layer. The metal bump extends upward from the metal layer and penetrates through the etching stop layer. The dielectric barrier layer covers the etching stop layer and the metal bump. The silicon oxide layer covers the dielectric barrier layer. The silicon carbonitride layer covers the silicon oxide layer.
    Type: Application
    Filed: February 22, 2021
    Publication date: June 30, 2022
    Inventors: Chin-Chia YANG, Fu-Yu TSAI, Da-Jun LIN, Bin-Siang TSAI
  • Publication number: 20220173311
    Abstract: A memory device and a manufacturing method thereof are provided. The memory device includes a device substrate, a resistance variable layer and a top electrode. The bottom electrode is disposed on the device substrate. The resistance variable layer is disposed on the bottom electrode. The top electrode is disposed on the resistance variable layer. The bottom electrode is formed with a tensile stress, while the top electrode is formed with a compressive stress.
    Type: Application
    Filed: January 4, 2021
    Publication date: June 2, 2022
    Applicant: United Microelectronics Corp.
    Inventors: Chich-Neng Chang, Da-Jun Lin, Shih-Wei Su, Fu-Yu Tsai, Bin-Siang Tsai
  • Publication number: 20220140002
    Abstract: A method for fabricating a semiconductor device includes the steps of first forming a magnetic tunneling junction (MTJ) on a substrate, forming a top electrode on the MTJ, forming an inter-metal dielectric (IMD) layer around the top electrode and the MTJ, forming a landing layer on the IMD layer and the MTJ, and then patterning the landing layer to form a landing pad. Preferably, the landing pad is disposed on the top electrode and the IMD layer adjacent to one side of the top electrode.
    Type: Application
    Filed: November 30, 2020
    Publication date: May 5, 2022
    Inventors: Da-Jun Lin, Yi-An Shih, Bin-Siang Tsai, Fu-Yu Tsai
  • Publication number: 20220085283
    Abstract: A method for fabricating semiconductor device includes first forming a first magnetic tunneling junction (MTJ) and a second MTJ on a substrate, performing an atomic layer deposition (ALD) process or a high-density plasma (HDP) process to form a passivation layer on the first MTJ and the second MTJ, performing an etching process to remove the passivation layer adjacent to the first MTJ and the second MTJ, and then forming an ultra low-k (ULK) dielectric layer on the passivation layer.
    Type: Application
    Filed: November 22, 2021
    Publication date: March 17, 2022
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Tai-Cheng Hou, Wei-Xin Gao, Fu-Yu Tsai, Chin-Yang Hsieh, Chen-Yi Weng, Jing-Yin Jhang, Bin-Siang Tsai, Kun-Ju Li, Chih-Yueh Li, Chia-Lin Lu, Chun-Lung Chen, Kun-Yuan Liao, Yu-Tsung Lai, Wei-Hao Huang
  • Publication number: 20220045266
    Abstract: An MRAM structure includes a dielectric layer. A first MRAM, a second MRAM and a third MRAM are disposed on the dielectric layer, wherein the second MRAM is disposed between the first MRAM and the third MRAM, and the second MRAM includes an MTJ. Two gaps are respectively disposed between the first MRAM and the second MRAM and between the second MRAM and the third MRAM. Two tensile stress pieces are respectively disposed in each of the two gaps. A first compressive stress layer surrounds and contacts the sidewall of the MTJ entirely. A second compressive stress layer covers the openings of each of the gaps and contacts the two tensile material pieces.
    Type: Application
    Filed: August 31, 2020
    Publication date: February 10, 2022
    Inventors: Da-Jun Lin, Min-Hua Tsai, Tai-Cheng Hou, Fu-Yu Tsai, Bin-Siang Tsai
  • Publication number: 20210314951
    Abstract: A wireless communication terminal including a wireless transceiver and a controller is provided. The wireless transceiver performs wireless transmission and reception to and from an AP. The controller is coupled to the wireless transceiver, and is operable to configure the wireless communication terminal to operate as a non-AP STA, and transmit a MU PPDU with a single RU spanning a partial bandwidth of the MU PPDU to the AP via the wireless transceiver. In particular, the partial bandwidth excludes a frequency band of a primary channel.
    Type: Application
    Filed: March 18, 2021
    Publication date: October 7, 2021
    Inventors: Cheng-Yi CHANG, Chao-Wen CHOU, Kun-Sheng HUANG, Fu-Yu TSAI, Hung-Tao HSIEH