Patents by Inventor Gang Duan

Gang Duan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11817349
    Abstract: A conductive route for an integrated circuit assembly may be formed using a sequence of etching and passivation steps through layers of conductive material, wherein the resulting structure may include a first route portion having a first surface, a second surface, and at least one side surface extending between the first surface and the second surface, an etch stop structure on the first route portion, a second route portion on the etch stop layer, wherein the second route portion has a first surface, a second surface, and at least one side surface extending between the first surface and the second surface, and a passivating layer abutting the at least one side surface of the second route portion.
    Type: Grant
    Filed: March 5, 2020
    Date of Patent: November 14, 2023
    Assignee: Intel Corporation
    Inventors: Jeremy Ecton, Brandon C. Marin, Leonel Arana, Matthew Tingey, Oscar Ojeda, Hsin-Wei Wang, Suddhasattwa Nad, Srinivas Pietambaram, Gang Duan
  • Publication number: 20230361044
    Abstract: Embodiments disclosed herein include electronic packages and methods of forming such packages. In an embodiment, a microelectronic device package may include a redistribution layer (RDL) and an interposer over the RDL. In an embodiment, a glass core may be formed over the RDL and surround the interposer. In an embodiment, the microelectronic device package may further comprise a plurality of dies over the interposer. In an embodiment, the plurality of dies are communicatively coupled with the interposer.
    Type: Application
    Filed: July 21, 2023
    Publication date: November 9, 2023
    Inventors: Srinivas PIETAMBARAM, Rahul MANEPALLI, Gang DUAN
  • Publication number: 20230343774
    Abstract: Techniques are provided for fine node heterogeneous-chip packages. In an example, a method of making a heterogeneous-chip package can include coupling electrical terminals of a first side of a first base die to electrical terminals of a first side of a second base die using a silicon bridge, forming an organic substrate about the silicon bridge and adjacent the first sides of the first and second base dies, and coupling a fine node die to a second side of at least one of the first base die or the second base die.
    Type: Application
    Filed: June 29, 2023
    Publication date: October 26, 2023
    Inventors: Srinivas PIETAMBARAM, Gang DUAN, Deepak KULKARNI
  • Patent number: 11792216
    Abstract: A container system monitors one or more activities of an application container in a container system by intercepting data from the one or more activities of the application container. The application container includes computer-readable instructions and initiated via a container service and isolated using operating system-level virtualization. The monitoring is performed at a layer between the app container and the container service. The container system also transmits a report of the intercepted one or more activities to a designated source. The container system inspects the intercepted one or more activities, and in response to the intercepted one or more activities violating a policy in a policy store, triggers an action specified in the policy.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: October 17, 2023
    Assignee: SUSE LLC
    Inventors: Fei Huang, Gang Duan, Zang Li
  • Patent number: 11780210
    Abstract: Embodiments of the present disclosure may generally relate to systems, apparatus, and/or processes directed to a manufacturing process flow for packages that include one or more glass layers that include patterning features, such as electrically conductive traces, RDLs, and vias within the packages. In embodiments, a package may include a glass layer with a first side and a second side opposite the first side, where the glass layer is a dielectric layer. The package may include another layer coupled with the first side of the glass layer, and a pattern on the second side of the glass layer to receive a deposited material in at least a portion of the pattern.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: October 10, 2023
    Assignee: Intel Corporation
    Inventors: Jieying Kong, Gang Duan, Srinivas Pietambaram, Patrick Quach, Dilan Seneviratne
  • Publication number: 20230317653
    Abstract: Embodiments herein relate to systems, apparatuses, techniques or processes for hybrid bonding a die to a substrate. In embodiments, the die may be a chiplet that is bonded to an interconnect. In embodiments, the die may be a plurality of dies, where the plurality of dies are hybrid bonded to a substrate, to each other, or a combination of both. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: March 30, 2022
    Publication date: October 5, 2023
    Inventors: Hongxia FENG, Xiaoxuan SUN, Amey Anant APTE, Dingying David XU, Sairam AGRAHARAM, Gang DUAN, Ashay DANI
  • Patent number: 11769735
    Abstract: Embodiments disclosed herein include electronic packages and methods of forming such electronic packages. In an embodiment, the electronic package comprises a mold layer having a first surface and a second surface opposite the first surface, and a plurality of first dies embedded in the mold layer. In an embodiment, each of the plurality of first dies has a surface that is substantially coplanar with the first surface of the mold layer. In an embodiment, the electronic package further comprises a second die embedded in the mold layer. In an embodiment, the second die is positioned between the plurality of first dies and the second surface of the mold layer.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: September 26, 2023
    Assignee: Intel Corporation
    Inventors: Srinivas Pietambaram, Gang Duan, Deepak Kulkarni, Rahul Manepalli, Xiaoying Guo
  • Patent number: 11756890
    Abstract: Embodiments disclosed herein include electronic packages and methods of forming such packages. In an embodiment, a microelectronic device package may include a redistribution layer (RDL) and an interposer over the RDL. In an embodiment, a glass core may be formed over the RDL and surround the interposer. In an embodiment, the microelectronic device package may further comprise a plurality of dies over the interposer. In an embodiment, the plurality of dies are communicatively coupled with the interposer.
    Type: Grant
    Filed: April 28, 2022
    Date of Patent: September 12, 2023
    Assignee: Intel Corporation
    Inventors: Srinivas Pietambaram, Rahul Manepalli, Gang Duan
  • Patent number: 11739233
    Abstract: The present disclosure is directed to an aqueous dispersion of polymeric particles having core-shell structure, the preparation thereof and the coating formed therefrom. In the polymeric particles, at least one of the polymeric core and the polymeric shell is formed from a monomers mixture comprising isobornyl (meth)acrylate and wherein the isobornyl (meth)acrylate is present in the monomers mixture in an amount of 1 wt % to 40 wt %, relative to the weight of the corresponding monomers mixture for the polymeric core or the polymeric shell.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: August 29, 2023
    Assignee: Guangdong Huarun Paints Co., Ltd.
    Inventors: Xiaorui Chen, Gang Duan, Xi Zhao
  • Publication number: 20230197660
    Abstract: A computer apparatus includes a hierarchy of solder joints in a multi-chip package, with solder joints at different levels of the packaging having different melting temperatures. Interconnections, such as pads or pins, on integrated circuit (IC) die can be electrically coupled to ends of contact pillars with solder joints having a higher melting temperature. The other ends of the contact pillars can electrically couple to another substrate or another device with solder joints having a lower melting temperature. The contact pillars can be, for example, a contact array or through-hole via in a substrate.
    Type: Application
    Filed: December 21, 2021
    Publication date: June 22, 2023
    Inventors: Yue DENG, Jung Kyu HAN, Liang HE, Gang DUAN, Rahul N. MANEPALLI
  • Publication number: 20230197679
    Abstract: Microelectronic assemblies, related devices and methods, are disclosed herein. In some embodiments, a microelectronic assembly may include a first die, having a first surface and an opposing second surface, in a first layer; a redistribution layer (RDL) on the first layer, wherein the RDL includes conductive vias having a greater width towards a first surface of the RDL and a smaller width towards an opposing second surface of the RDL; wherein the first surface of the RDL is electrically coupled to the second surface of the first die by first solder interconnects having a first solder; and a second die in a second layer on the RDL, wherein the second die is electrically coupled to the RDL by second solder interconnects having a second solder, wherein the second solder is different than the first solder.
    Type: Application
    Filed: December 21, 2021
    Publication date: June 22, 2023
    Applicant: Intel Corporation
    Inventors: Jeremy Ecton, Jason M. Gamba, Brandon C. Marin, Srinivas V. Pietambaram, Xiaoxuan Sun, Omkar G. Karhade, Xavier Francois Brun, Yonggang Li, Suddhasattwa Nad, Bohan Shan, Haobo Chen, Gang Duan
  • Publication number: 20230197543
    Abstract: Microelectronic assemblies, related devices and methods, are disclosed herein. In some embodiments, a microelectronic assembly may include a first die, having a first surface and an opposing second surface with conductive contacts, in a first layer; a first material surrounding the first die and extending along a thickness of the first die from the second surface, and wherein the first material includes first particles having an average diameter between 200 and 500 nanometers; a second material surrounding the first die and extending along the thickness of the first die from the first surface, and wherein the second material includes second particles having an average diameter between 0.5 and 12 microns; an interface portion, between the first and second materials, including the first and second particles; and a second die, in a second layer on the first layer, electrically coupled to the conductive contacts on the first die.
    Type: Application
    Filed: December 21, 2021
    Publication date: June 22, 2023
    Applicant: Intel Corporation
    Inventors: Liang He, Yue Deng, Jung Kyu Han, Gang Duan
  • Publication number: 20230146165
    Abstract: Described are microelectronic devices including an embedded microelectronic package for use as an integrated voltage regulator with a microelectronic system. The microelectronic package can include a substrate and a magnetic foil. The substrate can define at least one layer having one or more of electrically conductive elements separated by a dielectric material. The magnetic foil can have ferromagnetic alloy ribbons and can be embedded within the substrate adjacent to the one or more of electrically conductive elements. The magnetic foil can be positioned to interface with and be spaced from the one or more of electrically conductive element.
    Type: Application
    Filed: December 30, 2022
    Publication date: May 11, 2023
    Inventors: Srinivas PIETAMBARAM, Kristof DARMAWIKARTA, Gang DUAN, Yonggang LI, Sameer PAITAL
  • Patent number: 11646274
    Abstract: An integrated circuit package may be formed comprising a substrate that includes a mold material layer and a signal routing layer, wherein the mold material layer comprises at least one bridge and at least one foam structure embedded in a mold material. In one embodiment, the substrate may include the mold material of the mold material layer filling at least a portion of cells within the foam structure. In a further embodiment, at least two integrated circuit devices may be attached to the substrate, such that the bridge provides device-to-device interconnection between the at least two integrated circuit devices. In a further embodiment, the integrated circuit package may be electrically attached to an electronic board.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: May 9, 2023
    Assignee: Intel Corporation
    Inventors: Mufei Yu, Gang Duan, Edvin Cetegen, Baris Bicen, Rahul Manepalli
  • Publication number: 20230137877
    Abstract: No-remelt solder joints can eliminate die or substrate movement in downstream reflow processes. In one example, one or more solder joints between two substrates can be formed as full IMC (intermetallic compound) solder joints. In one example, a full IMC solder joint includes a continuous layer (e.g., from the top pad to bottom pad) of intermetallic compounds. In one example, a full IMC joint can be formed by dispensing a no-remelt solder paste on some of the pads of one or both substrates to be bonded together.
    Type: Application
    Filed: November 2, 2021
    Publication date: May 4, 2023
    Inventors: Bohan SHAN, Haobo CHEN, Omkar KARHADE, Malavarayan SANKARASUBRAMANIAN, Dingying XU, Gang DUAN, Bai NIE, Xiaoying GUO, Kristof DARMAWIKARTA, Hongxia FENG, Srinivas PIETAMBARAM, Jeremy D. ECTON
  • Patent number: 11622448
    Abstract: Embodiments include package substrates and method of forming the package substrates. A package substrate includes a first encapsulation layer over a substrate, and a second encapsulation layer below the substrate. The package substrate also includes a first interconnect and a second interconnect vertically in the first encapsulation layer, the second encapsulation layer, and the substrate. The first interconnect includes a first plated-through-hole (PTH) core, a first via, and a second via, and the second interconnect includes a second PTH core, a third via, and a fourth via. The package substrate further includes a magnetic portion that vertically surrounds the first interconnect. The first PTH core has a top surface directly coupled to the first via, and a bottom surface directly coupled to the second via. The second PTH core has a top surface directly coupled to the third via, and a bottom surface directly coupled to the fourth via.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: April 4, 2023
    Assignee: Intel Corporation
    Inventors: Brandon C. Marin, Tarek Ibrahim, Srinivas Pietambaram, Andrew J. Brown, Gang Duan, Jeremy Ecton, Sheng C. Li
  • Publication number: 20230101629
    Abstract: Various embodiments disclosed relate to methods of making omni-directional semiconductor interconnect bridges. The present disclosure includes semiconductor assemblies including a mold layer having mold material, a first filler material dispersed in the mold material, and a second filler material dispersed in the mold material, wherein the second filler material is heterogeneously dispersed.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Bohan Shan, Dingying Xu, Kristof Darmawikarta, Srinivas Venkata Ramanuja Pietambaram, Hongxia Feng, Gang Duan, Jung Kyu Han, Xiaoying Guo, Jeremy D. Ecton, Santosh Tripathi, Bai Nie, Haobo Chen, Kyle Jordan Arrington, Yue Deng, Wei Wei
  • Publication number: 20230085646
    Abstract: An electronic device comprises a mold layer that includes multiple integrated circuit (IC) dice having contact pads, a glass core patch embedded in encapsulating material that surrounds the top, bottom, and sides of the glass core patch, and a first redistribution layer arranged between the first mold layer and the glass core patch. The first redistribution layer includes electrically conductive interconnect that electrically connects one or more contact pads of the IC dice to the glass core patch.
    Type: Application
    Filed: September 22, 2021
    Publication date: March 23, 2023
    Inventors: Jeremy D Ecton, Leonel R. Arana, Brandon C. Marin, Srinivas Venkata Ramanuja Pietambaram, Gang Duan
  • Publication number: 20230087838
    Abstract: Embodiments described herein may be related to apparatuses, processes, and techniques directed to a protective coating for an edge of a glass layer, in particular a glass core within a substrate of a package, where the protective coating serves to protect the edge of the glass core and fill in cracks at the edges of the glass. This protective coating will decrease cracking during stresses applied to the glass layer during manufacturing or operation. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: September 20, 2021
    Publication date: March 23, 2023
    Inventors: Rahul N. MANEPALLI, Srinivas V. PIETAMBARAM, Ravindra TANIKELLA, Sameer PAITAL, Gang DUAN
  • Publication number: 20230087810
    Abstract: Embodiments disclosed herein include electronic packages and methods of forming such electronic packages. In an embodiment, an electronic package comprises a plurality of stacked layers. In an embodiment, a first trace is on a first layer, wherein the first trace has a first thickness. In an embodiment, a second trace is on the first layer, wherein the second trace has a second thickness that is greater than the first thickness. In an embodiment, a second layer is over the first trace and the second trace.
    Type: Application
    Filed: September 23, 2021
    Publication date: March 23, 2023
    Inventors: Jeremy D. ECTON, Kristof DARMAWIKARTA, Suddhasattwa NAD, Oscar OJEDA, Bai NIE, Brandon C. MARIN, Gang DUAN, Jacob VEHONSKY, Onur OZKAN, Nicholas S. HAEHN