Patents by Inventor Gauri Karve

Gauri Karve has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10622250
    Abstract: Apparatus and methods for dielectric gap fill evaluations are provided. In one example, a method can comprise providing a gap fill substrate over one or more interlayer dielectric trenches of a dielectric layer and over a first material located in the one or more interlayer dielectric trenches. The method can also comprise depositing a gap fill candidate material within one or more gap fill substrate trenches of the gap fill substrate. Furthermore, the method can comprise etching the gap fill candidate material until a void within the first material is identified. Additionally, the method can comprise filling the one or more gap fill substrate trenches with a second material to form one or more contacts with the first material to measure a leakage current of one or more pitches.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: April 14, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Isabel Cristina Chu, Lawrence A. Clevenger, Leigh Anne H. Clevenger, Ekmini Anuja De Silva, Gauri Karve, Fee Li Lie, Nicole Adelle Saulnier, Indira Seshadri, Hosadurga Shobha
  • Patent number: 10615278
    Abstract: A semiconductor structure includes a stained fin, a gate upon the strain fin, and a spacer upon a sidewall of the gate and upon an end surface of the strained fin. The end surface of the strained fin is coplanar with a sidewall of the gate. The spacer limits relaxation of the strained fin.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: April 7, 2020
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Hong He, Sivananda K. Kanakasabapathy, Gauri Karve, Juntao Li, Fee Li Lie, Derrick Liu, Chun Wing Yeung
  • Patent number: 10615276
    Abstract: A vertical field-effect transistor (FET) device and an input/output (IO) FET device are formed. The vertical FET device is formed in a vertical FET device area of a substrate and the IO FET device is formed in an IO FET device area of the substrate. Forming the vertical FET device and the IO FET device includes forming a plurality of first fin structures in the vertical FET device area and forming at least two second fin structures in the IO FET device area. The at least two second fin structures are separated by a distance associated with a length of a channel connecting the at least two fin structures in the IO FET device area. The length of the channel is determined based on at least one voltage for implementing the IO FET device.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: April 7, 2020
    Assignee: International Business Machines Corporation
    Inventors: Xuefeng Liu, Junli Wang, Brent A. Anderson, Terence B. Hook, Gauri Karve
  • Publication number: 20200066906
    Abstract: A method for fabricating a semiconductor device includes forming a vertical field-effect transistor (FET) device including a plurality of first fin structures in a vertical FET device area of a substrate, and forming an input/output (IO) FET device including at least two second fin structures in an IO FET device area of the substrate. The at least two fin structures are connected by a channel having a length determined based on at least one voltage for implementing the IO FET device. Forming the vertical FET and IO FET devices includes selectively exposing a portion of the IO FET device area by selectively removing a portion of a first spacer formed on the substrate in the IO FET device area.
    Type: Application
    Filed: October 31, 2019
    Publication date: February 27, 2020
    Inventors: Xuefeng Liu, Junli Wang, Brent A. Anderson, Terence B. Hook, Gauri Karve
  • Patent number: 10573745
    Abstract: Embodiments are directed to methods and resulting structures for a vertical field effect transistor (VFET) having a super long channel. A pair of semiconductor fins is formed on a substrate. A semiconductor pillar is formed between the semiconductor fins on the substrate. A region that extends under all of the semiconductor fins and under part of the semiconductor pillar is doped. A conductive gate is formed over a channel region of the semiconductor fins and the semiconductor pillar. A surface of the semiconductor pillar serves as an extended channel region when the gate is active.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: February 25, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Marc A. Bergendahl, Kangguo Cheng, Gauri Karve, Fee Li Lie, Eric R. Miller, John R. Sporre, Sean Teehan
  • Publication number: 20200052107
    Abstract: A method of forming a nanosheet device is provided. The method includes forming a nanosheet channel layer stack and dummy gate structure on a substrate. The method further includes forming a curved recess in the substrate surface adjacent to the nanosheet channel layer stack. The method further includes depositing a protective layer on the curved recess, dummy gate structure, and exposed sidewall surfaces of the nanosheet layer stack, and removing a portion of the protective layer on the curved recess to form a downward-spiked ridge around the rim of the curved recess. The method further includes extending the curved recess deeper into the substrate to form an extended recess, and forming a sacrificial layer at the surface of the extended recess in the substrate.
    Type: Application
    Filed: August 13, 2018
    Publication date: February 13, 2020
    Inventors: Fee Li Lie, Mona Ebrish, Ekmini A. De Silva, Indira Seshadri, Gauri Karve, Lawrence A. Clevenger, Leigh Anne H. Clevenger, Nicolas Loubet
  • Publication number: 20200013891
    Abstract: A semiconductor device includes a substrate having an input/output (IO) field-effect transistor (FET) device area, and an IO FET device formed in the IO FET device area. The IO FET device includes at least two fin structures separated by a distance associated with a length of a channel connecting the at least two fin structures. The length of the channel is determined based on at least one voltage for implementing the IO FET device.
    Type: Application
    Filed: September 19, 2019
    Publication date: January 9, 2020
    Inventors: Xuefeng Liu, Junli Wang, Brent A. Anderson, Terence B. Hook, Gauri Karve
  • Publication number: 20190371822
    Abstract: Sub-fin removal techniques for SOI like isolation in finFET devices are provided. In one aspect, a method for forming a finFET device includes: etching partial fins in a substrate, wherein the partial fins include top portions of fins of the finFET device; forming a bi-layer spacer on the top portions of the fins; complete etching of the fins in the substrate to form bottom portions of the fins of the finFET device; depositing an insulator between the fins; recessing the insulator enough to expose a region of the fins not covered by the bi-layer spacer; removing the exposed region of the fins to create a gap between the top and bottom portions of the fins; filling the gap with additional insulator. A method for forming a finFET device is also provided where placement of the fin spacer occurs after (rather than before) insulator deposition. A finFET device is also provided.
    Type: Application
    Filed: August 15, 2019
    Publication date: December 5, 2019
    Inventors: Marc A. Bergendahl, Kangguo Cheng, Gauri Karve, Fee Li Lie, Eric R. Miller, John R. Sporre, Sean Teehan
  • Publication number: 20190341490
    Abstract: Embodiments are directed to methods and resulting structures for a vertical field effect transistor (VFET) having a super long channel. A pair of semiconductor fins is formed on a substrate. A semiconductor pillar is formed between the semiconductor fins on the substrate. A region that extends under all of the semiconductor fins and under part of the semiconductor pillar is doped. A conductive gate is formed over a channel region of the semiconductor fins and the semiconductor pillar. A surface of the semiconductor pillar serves as an extended channel region when the gate is active.
    Type: Application
    Filed: July 19, 2019
    Publication date: November 7, 2019
    Inventors: Marc A. Bergendahl, Kangguo Cheng, Gauri Karve, Fee Li Lie, Eric R. Miller, John R. Sporre, Sean Teehan
  • Publication number: 20190326289
    Abstract: A method for fabricating fin field effect transistors comprises creating a pattern of self-aligned small cavities for P-type material growth using at least two hard mask layers, generating a pre-defined isolation area around each small cavity using a vertical spacer, selectively removing N-type material from the self-aligned small cavities, and growing P-type material in the small cavities. The P-type material may be silicon germanium (SiGe) and the N-type material may be tensile Silicon (t-Si). The pattern of self-aligned small cavities for P-type material growth is created by depositing two hard mask materials over a starting substrate wafer, selectively depositing photo resist over a plurality N-type areas, reactive ion etching to remove the second hard mask layer material over areas not covered by photo resist to create gaps in second hard mask layer, and removing the photo resist to expose the second hard mask material in the N-type areas.
    Type: Application
    Filed: July 2, 2019
    Publication date: October 24, 2019
    Inventors: Lawrence A. CLEVENGER, Leigh Anne H. CLEVENGER, Mona A. EBRISH, Gauri KARVE, Fee Li LIE, Deepika PRIYADARSHINI, Indira Priyavarshini SESHADRI, Nicole A. SAULNIER
  • Patent number: 10438972
    Abstract: Sub-fin removal techniques for SOI like isolation in finFET devices are provided. In one aspect, a method for forming a finFET device includes: etching partial fins in a substrate, wherein the partial fins include top portions of fins of the finFET device; forming a bi-layer spacer on the top portions of the fins; complete etching of the fins in the substrate to form bottom portions of the fins of the finFET device; depositing an insulator between the fins; recessing the insulator enough to expose a region of the fins not covered by the bi-layer spacer; removing the exposed region of the fins to create a gap between the top and bottom portions of the fins; filling the gap with additional insulator. A method for forming a finFET device is also provided where placement of the fin spacer occurs after (rather than before) insulator deposition. A finFET device is also provided.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: October 8, 2019
    Assignee: International Business Machines Corporation
    Inventors: Marc A. Bergendahl, Kangguo Cheng, Gauri Karve, Fee Li Lie, Eric R. Miller, John R. Sporre, Sean Teehan
  • Patent number: 10424663
    Abstract: Embodiments are directed to methods and resulting structures for a vertical field effect transistor (VFET) having a super long channel. A pair of semiconductor fins is formed on a substrate. A semiconductor pillar is formed between the semiconductor fins on the substrate. A region that extends under all of the semiconductor fins and under part of the semiconductor pillar is doped. A conductive gate is formed over a channel region of the semiconductor fins and the semiconductor pillar. A surface of the semiconductor pillar serves as an extended channel region when the gate is active.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: September 24, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Marc A. Bergendahl, Kangguo Cheng, Gauri Karve, Fee Li Lie, Eric R. Miller, John R. Sporre, Sean Teehan
  • Publication number: 20190259833
    Abstract: A semiconductor device includes a fin structure including a cylindrical shape, an inner gate formed inside the fin structure, and an outer gate formed outside the fin structure and connected to the inner gate.
    Type: Application
    Filed: April 30, 2019
    Publication date: August 22, 2019
    Inventors: Marc Adam BERGENDAHL, Gauri Karve, Fee Li Lie, Eric R. Miller, Robert Russell Robison, John Ryan Sporre, Sean Teehan
  • Publication number: 20190259832
    Abstract: A semiconductor device includes a fin structure having a circular cylindrical shape, and including a first recess formed on a first side of the fin structure and a second recess formed on a second side of the fin structure opposite the first side, an inner gate formed inside the fin structure, and an inner gate insulating layer formed between the inner gate and an inner surface of the fin structure.
    Type: Application
    Filed: April 30, 2019
    Publication date: August 22, 2019
    Inventors: Marc Adam BERGENDAHL, Gauri KARVE, Fee Li LIE, Eric R. MILLER, Robert Russell ROBISON, John Ryan SPORRE, Sean TEEHAN
  • Patent number: 10381437
    Abstract: A semiconductor device includes a fin structure including a cylindrical shape, an inner gate formed inside the fin structure, and an outer gate formed outside the fin structure and connected to the inner gate.
    Type: Grant
    Filed: December 30, 2017
    Date of Patent: August 13, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Marc Adam Bergendahl, Gauri Karve, Fee Li Lie, Eric R. Miller, Robert Russell Robison, John Ryan Sporre, Sean Teehan
  • Patent number: 10381348
    Abstract: A method for fabricating fin field effect transistors comprises creating a pattern of self-aligned small cavities for P-type material growth using at least two hard mask layers, generating a pre-defined isolation area around each small cavity using a vertical spacer, selectively removing N-type material from the self-aligned small cavities, and growing P-type material in the small cavities. The P-type material may be silicon germanium (SiGe) and the N-type material may be tensile Silicon (t-Si). The pattern of self-aligned small cavities for P-type material growth is created by depositing two hard mask materials over a starting substrate wafer, selectively depositing photo resist over a plurality N-type areas, reactive ion etching to remove the second hard mask layer material over areas not covered by photo resist to create gaps in second hard mask layer, and removing the photo resist to expose the second hard mask material in the N-type areas.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: August 13, 2019
    Assignee: International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Leigh Anne H. Clevenger, Mona A. Ebrish, Gauri Karve, Fee Li Lie, Deepika Priyadarshini, Indira Priyavarshini Seshadri, Nicole A. Saulnier
  • Patent number: 10361127
    Abstract: A method for forming a device with multiple gate lengths includes forming a gate stack on vertical fins. A cutting mask formed on the gate stack is etched to include two or more different heights. Gate structures with two or more gate lengths are etched by employing the two or more different heights in the cutting mask as an etch mask. The cutting mask is removed. A top source/drain regions is formed on top of the vertical fins.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: July 23, 2019
    Assignee: International Business Machines Corporation
    Inventors: Gauri Karve, Fee Li Lie, Indira Seshadri, Mona Ebrish, Leigh Anne H. Clevenger, Ekmini A. De Silva, Nicole A. Saulnier
  • Publication number: 20190206738
    Abstract: A method for forming a device with multiple gate lengths includes forming a gate stack on vertical fins. A cutting mask formed on the gate stack is etched to include two or more different heights. Gate structures with two or more gate lengths are etched by employing the two or more different heights in the cutting mask as an etch mask. The cutting mask is removed. A top source/drain regions is formed on top of the vertical fins.
    Type: Application
    Filed: December 28, 2017
    Publication date: July 4, 2019
    Inventors: Gauri Karve, Fee Li Lie, Indira Seshadri, Mona Ebrish, Leigh Anne H. Clevenger, Ekmini A. De Silva, Nicole A. Saulnier
  • Publication number: 20190198667
    Abstract: A vertical field-effect transistor (FET) device and an input/output (IO) FET device are formed. The vertical FET device is formed in a vertical FET device area of a substrate and the IO FET device is formed in an IO FET device area of the substrate. Forming the vertical FET device and the IO FET device includes forming a plurality of first fin structures in the vertical FET device area and forming at least two second fin structures in the IO FET device area. The at least two second fin structures are separated by a distance associated with a length of a channel connecting the at least two fin structures in the IO FET device area. The length of the channel is determined based on at least one voltage for implementing the IO FET device.
    Type: Application
    Filed: December 22, 2017
    Publication date: June 27, 2019
    Inventors: Xuefeng Liu, Junli Wang, Brent A. Anderson, Terence B. Hook, Gauri Karve
  • Publication number: 20190189503
    Abstract: Apparatus and methods for dielectric gap fill evaluations are provided. In one example, a method can comprise providing a gap fill substrate over one or more interlayer dielectric trenches of a dielectric layer and over a first material located in the one or more interlayer dielectric trenches. The method can also comprise depositing a gap fill candidate material within one or more gap fill substrate trenches of the gap fill substrate. Furthermore, the method can comprise etching the gap fill candidate material until a void within the first material is identified. Additionally, the method can comprise filling the one or more gap fill substrate trenches with a second material to form one or more contacts with the first material to measure a leakage current of one or more pitches.
    Type: Application
    Filed: December 19, 2017
    Publication date: June 20, 2019
    Inventors: Isabel Cristina Chu, Lawrence A. Clevenger, Leigh Anne H. Clevenger, Ekmini Anuja De Silva, Gauri Karve, Fee Li Lie, Nicole Adelle Saulnier, Indira Seshadri, Hosadurga Shobha