Patents by Inventor Ge Yang

Ge Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9438213
    Abstract: A flip-flop circuit may include a master latch and a slave latch. Each latch may have a transparent mode and a storage mode. The slave latch may be in storage mode when the master latch is in transparent mode; and vice-versa. A clock signal may control the mode of each latch through a pair of clock-gated pull-up transistors and a pair clock-gated of pull-down transistors, for a total of four clock-gated transistors. The clock-gated transistors may be shared by the master latch and the slave latch. Fewer clock-gated transistors may be required when they are shared, as opposed to not being shared. Clock-gated transistors may have parasitic capacitance and consume power when subjected to a varying clock signal, due to the charging and discharging of the parasitic capacitance. Having fewer clock-gated transistors thus may reduce the power consumed by the flip-flop circuit.
    Type: Grant
    Filed: May 27, 2015
    Date of Patent: September 6, 2016
    Assignee: NVIDIA Corporation
    Inventors: Ilyas Elkin, Ge Yang
  • Patent number: 9437692
    Abstract: Technologies are described effective to implement systems and methods of producing a material. The methods comprise receiving a tertiary semiconductor sample with a dilute species. The sample has two ends. The first end of the sample includes a first concentration of the dilute species lower than a second concentration of the dilute species in the second end of the sample. The method further comprises heating the sample in a chamber. The chamber has a first zone and a second zone. The first zone having a first temperature higher than a second temperature in the second zone. The sample is orientated such that the first end is in the first zone and the second end is in the second zone.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: September 6, 2016
    Assignee: Brookhaven Science Associates, LLC
    Inventors: Ralph B. James, Giuseppe Camarda, Aleksey E. Bolotnikov, Anwar Hossain, Ge Yang, Kihyun Kim
  • Patent number: 9335423
    Abstract: A radiation detector device is provided that is capable of distinguishing between full charge collection (FCC) events and incomplete charge collection (ICC) events based upon a correlation value comparison algorithm that compares correlation values calculated for individually sensed radiation detection events with a calibrated FCC event correlation function. The calibrated FCC event correlation function serves as a reference curve utilized by a correlation value comparison algorithm to determine whether a sensed radiation detection event fits the profile of the FCC event correlation function within the noise tolerances of the radiation detector device. If the radiation detection event is determined to be an ICC event, then the spectrum for the ICC event is rejected and excluded from inclusion in the radiation detector device spectral analyses. The radiation detector device also can calculate a performance factor to determine the efficacy of distinguishing between FCC and ICC events.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: May 10, 2016
    Assignee: Brookhaven Science Associates, LLC
    Inventors: Aleksey E. Bolotnikov, Gianluigi De Geronimo, Emerson Vernon, Ge Yang, Giuseppe Camarda, Yonggang Cui, Anwar Hossain, Ki Hyun Kim, Ralph B. James
  • Publication number: 20160043706
    Abstract: A flip-flop element is configured to gate the clock inversions within a master-slave flip-flop element. The flip-flop element reduces the number of circuit elements within the flip-flop element by collapsing elements with common functionality into a single circuit element. Further, by making the actions of judiciously selected circuit elements conditional upon the state of the input data, the flip-flop element circuit reduces the number of internal transitions. In this manner, by reducing the number of circuit elements as well as the number of transitions, the flip-flop element achieves substantial reduction in overall system power consumption, resulting in a more efficient system.
    Type: Application
    Filed: August 11, 2014
    Publication date: February 11, 2016
    Inventors: Ilyas ELKIN, Ge YANG, Xi ZHANG, Jiani YU
  • Patent number: 9219480
    Abstract: A flip-flop and a method of receiving a digital signal from an asynchronous domain. In one embodiment, the flip-flop includes: (1) a first loop coupled to a flip-flop input and having first and second stable states and (2) a second loop coupled to the first loop and having the first and second stable states, properties of cross-coupled inverters in the first and second loops creating a metastable state skewed toward the first stable state in the first loop and skewed toward the second stable state in the second loop. Certain embodiments of the flip-flop have lower time constant and thus a higher Mean Time Between Failure (MTBF).
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: December 22, 2015
    Assignee: Nvidia Corporation
    Inventors: Hwong-Kwo Lin, Ge Yang, Xi Zhang, Ying Huang
  • Publication number: 20150263708
    Abstract: A flip-flop circuit may include a master latch and a slave latch. Each latch may have a transparent mode and a storage mode. The slave latch may be in storage mode when the master latch is in transparent mode; and vice-versa. A clock signal may control the mode of each latch through a pair of clock-gated pull-up transistors and a pair clock-gated of pull-down transistors, for a total of four clock-gated transistors. The clock-gated transistors may be shared by the master latch and the slave latch. Fewer clock-gated transistors may be required when they are shared, as opposed to not being shared. Clock-gated transistors may have parasitic capacitance and consume power when subjected to a varying clock signal, due to the charging and discharging of the parasitic capacitance. Having fewer clock-gated transistors thus may reduce the power consumed by the flip-flop circuit.
    Type: Application
    Filed: May 27, 2015
    Publication date: September 17, 2015
    Inventors: Ilyas Elkin, Ge Yang
  • Patent number: 9121953
    Abstract: A radiation detector system that solves the electron trapping problem by optimizing shielding of the individual virtual Frisch-grid detectors in an array configuration with a common cathode.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: September 1, 2015
    Assignee: Brookhaven Science Associates, LLC
    Inventors: Aleksey E. Bolotnikov, Ge Yang, Giuseppe Camarda, Yonggang Cui, Anwar Hossain, Ki Hyun Kim, Ralph B. James
  • Patent number: 9110141
    Abstract: A scan flip-flop circuit comprises a scan input sub-circuit and a selection sub-circuit. The scan input sub-circuit is configured to receive a scan input signal and a scan enable signal and, when the scan enable signal is activated, generate complementary scan input signals representing the scan input signal that are delayed relative to a transition of a clock input signal between two different logic levels. The selection sub-circuit is coupled to the scan input sub-circuit and configured to receive the complementary scan input signals and, based on the scan enable signal, output an inverted version of either the scan input signal or a data signal as a first selected input signal.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: August 18, 2015
    Assignee: NVIDIA Corporation
    Inventors: Hwong-Kwo Lin, Ge Yang, Xi Zhang, Jiani Yu, Ting-Hsiang Chu
  • Publication number: 20150222266
    Abstract: A flip-flop and a method of receiving a digital signal from an asynchronous domain. In one embodiment, the flip-flop includes: (1) a first loop coupled to a flip-flop input and having first and second stable states and (2) a second loop coupled to the first loop and having the first and second stable states, properties of cross-coupled inverters in the first and second loops creating a metastable state skewed toward the first stable state in the first loop and skewed toward the second stable state in the second loop. Certain embodiments of the flip-flop have lower time constant and thus a higher Mean Time Between Failure (MTBF).
    Type: Application
    Filed: January 31, 2014
    Publication date: August 6, 2015
    Applicant: Nvidia Corporation
    Inventors: Hwong-Kwo Lin, Ge Yang, Xi Zhang, Ying Huang
  • Patent number: 9071233
    Abstract: A flip-flop circuit may include a master latch and a slave latch. Each latch may have a transparent mode and a storage mode. The slave latch may be in storage mode when the master latch is in transparent mode; and vice-versa. A clock signal may control the mode of each latch through a pair of clock-gated pull-up transistors and a pair clock-gated of pull-down transistors, for a total of four clock-gated transistors. The clock-gated transistors may be shared by the master latch and the slave latch. Fewer clock-gated transistors may be required when they are shared, as opposed to not being shared. Clock-gated transistors may have parasitic capacitance and consume power when subjected to a varying clock signal, due to the charging and discharging of the parasitic capacitance. Having fewer clock-gated transistors thus may reduce the power consumed by the flip-flop circuit.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: June 30, 2015
    Assignee: NVIDIA Corporation
    Inventors: Ilyas Elkin, Ge Yang
  • Patent number: 9071240
    Abstract: Provided herein is a voltage level shifter, an apparatus including a voltage level shifter and a method of converting voltages between input and output power domains. In one embodiment, the voltage level shifter includes: (1) an input circuit configured to receive a data signal from an input power domain and a power down signal from a output power domain and (2) a transition circuit coupled to the input circuit and configured to receive the data signal and an inverted signal of the power down signal, wherein the input circuit and the transition circuit are both configured to connect to a supply voltage of the output power domain as a power source.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: June 30, 2015
    Assignee: Nvidia Corporation
    Inventors: Hank Lin, Ge Yang, Xi Zhang, Jiani Yu, Haiyan Gong
  • Patent number: 8988123
    Abstract: Small area low power data retention flop. In accordance with a first embodiment of the present invention, a circuit includes a master latch coupled to a data retention latch. The data retention latch is configured to operate as a slave latch to the master latch to implement a master-slave flip flop during normal operation. The data retention latch is configured to retain an output value of the master-slave flip flop during a low power data retention mode when the master latch is powered down. A single control input is configured to select between the normal operation and the low power data retention mode. The circuit may be independent of a third latch.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: March 24, 2015
    Assignee: NVIDIA Corporation
    Inventors: Ge Yang, Hwong-Kwo Lin, Xi Zhang, Jiani Yu
  • Publication number: 20150028927
    Abstract: A flip-flop circuit may include a master latch and a slave latch. Each latch may have a transparent mode and a storage mode. The slave latch may be in storage mode when the master latch is in transparent mode; and vice-versa. A clock signal may control the mode of each latch through a pair of clock-gated pull-up transistors and a pair clock-gated of pull-down transistors, for a total of four clock-gated transistors. The clock-gated transistors may be shared by the master latch and the slave latch. Fewer clock-gated transistors may be required when they are shared, as opposed to not being shared. Clock-gated transistors may have parasitic capacitance and consume power when subjected to a varying clock signal, due to the charging and discharging of the parasitic capacitance. Having fewer clock-gated transistors thus may reduce the power consumed by the flip-flop circuit.
    Type: Application
    Filed: July 24, 2013
    Publication date: January 29, 2015
    Inventors: Ilyas Elkin, Ge Yang
  • Patent number: 8890573
    Abstract: A clock gating latch, a method of gating a clock signal and an integrating circuit incorporating the clock gating latch or the method. In one embodiment, the clock gating latch includes: (1) a propagation circuit having a single, first switch configured to be driven by an input clock signal, (2) a keeper circuit coupled to the propagation circuit and having a single, first switch configured to be driven by the input clock signal and (3) an AND gate coupled to the propagation circuit and the keeper circuit and having an internal node coupled to a second switch in the propagation circuit and a second switch in the keeper circuit.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: November 18, 2014
    Assignee: Nvidia Corporation
    Inventors: Ilyas Elkin, Ge Yang, Jonah Alben
  • Publication number: 20140313817
    Abstract: A static random access memory (SRAM) cell is disclosed. The SRAM cell includes a storage unit configured to store a data bit in a storage node. The SRAM cell further includes an access unit coupled to the storage unit. The access unit is configured to transfer current to the storage node when a word line is asserted. The SRAM cell further includes a row header configured to provide current from a power supply when the word line is not asserted, and to not provide current from the power supply when the word line is asserted. The SRAM cell further includes a column header configured to provide current from a power supply when a write column line is not asserted, and to not provide current from the power supply when the write column line is asserted.
    Type: Application
    Filed: April 18, 2013
    Publication date: October 23, 2014
    Applicant: NVIDIA CORPORATION
    Inventors: Hwong-Kwo LIN, Ge YANG, Fei SONG, Xi ZHANG, Haiyan GONG
  • Patent number: 8866528
    Abstract: A dual flip-flop circuit combines two or more flip-flip sub-circuits into a single circuit. The flip-flop circuit comprises a first flip-flop sub-circuit and a second flip-flop sub-circuit. The first flip-flop sub-circuit comprises a first storage sub-circuit configured to store a first selected input signal and transfer the first selected input signal to a first output signal when a buffered clock signal transitions between two different logic levels and a dock driver configured to receive a clock input signal, generate an inverted clock signal, and generate the buffered clock signal. The second flip-flop sub-circuit is coupled to the clock driver and configured to receive the inverted clock signal and the buffered clock signal. The second flip-flop sub-circuit comprises a second storage sub-circuit configured to store a second selected input signal and transfer the second selected input signal to a second output signal when the buffered clock signal transitions.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: October 21, 2014
    Assignee: NVIDIA Corporation
    Inventors: Hwong-Kwo Lin, Ge Yang, Xi Zhang, Jiani Yu, Ting-Hsiang Chu
  • Publication number: 20140231657
    Abstract: A radiation detector device is provided that is capable of distinguishing between full charge collection (FCC) events and incomplete charge collection (ICC) events based upon a correlation value comparison algorithm that compares correlation values calculated for individually sensed radiation detection events with a calibrated FCC event correlation function. The calibrated FCC event correlation function serves as a reference curve utilized by a correlation value comparison algorithm to determine whether a sensed radiation detection event fits the profile of the FCC event correlation function within the noise tolerances of the radiation detector device. If the radiation detection event is determined to be an ICC event, then the spectrum for the ICC event is rejected and excluded from inclusion in the radiation detector device spectral analyses. The radiation detector device also can calculate a performance factor to determine the efficacy of distinguishing between FCC and ICC events.
    Type: Application
    Filed: June 29, 2012
    Publication date: August 21, 2014
    Applicant: BROOKHAVEN SCIENCE ASSOCIATES, LLC
    Inventors: Aleksey Bolotnikov, Gianluigi De Geronimo, Emerson Vernon, Ge Yang, Giuseppe Camarda, Yonggang Cui, Anwar Hossain, KiHyun Kim, Ralph B. James
  • Publication number: 20140169108
    Abstract: Mitigating external influences on long signal lines. In accordance with an embodiment of the present invention, a column of a memory array includes first and second transistors configured to pull up the bit line of the column. The column includes a third transistor configured to selectively pull up the bit line of the column responsive to a level of the inverted bit line of the column and a fourth transistor configured to selectively pull up the inverted bit line of the column responsive to a level of the bit line of the column. The column further includes fifth and sixth transistors configured to selectively pull up the bit line and inverted bit line of the column responsive to the clamp signal and a seventh transistor configured to selectively couple the bit line of the column and the inverted bit line of the column responsive to the clamp signal.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Applicant: NVIDIA CORPORATION
    Inventors: Ge Yang, Hwong-Kwo Lin, Xi Zhang, Jiani Yu, Haiyan Gong
  • Publication number: 20140167828
    Abstract: Small area low power data retention flop. In accordance with a first embodiment of the present invention, a circuit includes a master latch coupled to a data retention latch. The data retention latch is configured to operate as a slave latch to the master latch to implement a master-slave flip flop during normal operation. The data retention latch is configured to retain an output value of the master-slave flip flop during a low power data retention mode when the master latch is powered down. A single control input is configured to select between the normal operation and the low power data retention mode. The circuit may be independent of a third latch.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Applicant: NVIDIA CORPORATION
    Inventors: Ge Yang, Hwong-Kwo Lin, Xi Zhang, Jiani Yu
  • Publication number: 20140125377
    Abstract: A dual flip-flop circuit combines two or more flip-flip sub-circuits into a single circuit. The flip-flop circuit comprises a first flip-flop sub-circuit and a second flip-flop sub-circuit. The first flip-flop sub-circuit comprises a first storage sub-circuit configured to store a first selected input signal and transfer the first selected input signal to a first output signal when a buffered clock signal transitions between two different logic levels and a dock driver configured to receive a clock input signal, generate an inverted clock signal, and generate the buffered clock signal. The second flip-flop sub-circuit is coupled to the clock driver and configured to receive the inverted clock signal and the buffered clock signal. The second flip-flop sub-circuit comprises a second storage sub-circuit configured to store a second selected input signal and transfer the second selected input signal to a second output signal when the buffered clock signal transitions.
    Type: Application
    Filed: November 2, 2012
    Publication date: May 8, 2014
    Applicant: NVIDIA Corporation
    Inventors: Hwong-Kwo Lin, Ge Yang, Xi Zhang, Jiani Yu, Ting-Hsiang Chu