Patents by Inventor Geordie Rose

Geordie Rose has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170351974
    Abstract: Systems, methods and aspects, and embodiments thereof relate to unsupervised or semi-supervised features learning using a quantum processor. To achieve unsupervised or semi-supervised features learning, the quantum processor is programmed to achieve Hierarchal Deep Learning (referred to as HDL) over one or more data sets. Systems and methods search for, parse, and detect maximally repeating patterns in one or more data sets or across data or data sets. Embodiments and aspects regard using sparse coding to detect maximally repeating patterns in or across data. Examples of sparse coding include L0 and L1 sparse coding. Some implementations may involve appending, incorporating or attaching labels to dictionary elements, or constituent elements of one or more dictionaries. There may be a logical association between label and the element labeled such that the process of unsupervised or semi-supervised feature learning spans both the elements and the incorporated, attached or appended label.
    Type: Application
    Filed: July 3, 2017
    Publication date: December 7, 2017
    Inventors: Geordie Rose, Suzanne Gildert, William G. Macready, Dominic Christoph Walliman
  • Publication number: 20170300454
    Abstract: Analog processors for solving various computational problems are provided. Such analog processors comprise a plurality of quantum devices, arranged in a lattice, together with a plurality of coupling devices. The analog processors further comprise bias control systems each configured to apply a local effective bias on a corresponding quantum device. A set of coupling devices in the plurality of coupling devices is configured to couple nearest-neighbor quantum devices in the lattice. Another set of coupling devices is configured to couple next-nearest neighbor quantum devices. The analog processors further comprise a plurality of coupling control systems each configured to tune the coupling value of a corresponding coupling device in the plurality of coupling devices to a coupling. Such quantum processors further comprise a set of readout devices each configured to measure the information from a corresponding quantum device in the plurality of quantum devices.
    Type: Application
    Filed: June 28, 2017
    Publication date: October 19, 2017
    Inventors: Alexander Maassen van den Brink, Peter Love, Mohammad H.S. Amin, Geordie Rose, David Grant, Miles F.H. Steininger, Paul I. Bunyk, Andrew J. Berkley
  • Patent number: 9727824
    Abstract: Systems, methods and aspects, and embodiments thereof relate to unsupervised or semi-supervised features learning using a quantum processor. To achieve unsupervised or semi-supervised features learning, the quantum processor is programmed to achieve Hierarchal Deep Learning (referred to as HDL) over one or more data sets. Systems and methods search for, parse, and detect maximally repeating patterns in one or more data sets or across data or data sets. Embodiments and aspects regard using sparse coding to detect maximally repeating patterns in or across data. Examples of sparse coding include L0 and L1 sparse coding. Some implementations may involve appending, incorporating or attaching labels to dictionary elements, or constituent elements of one or more dictionaries. There may be a logical association between label and the element labeled such that the process of unsupervised or semi-supervised feature learning spans both the elements and the incorporated, attached or appended label.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: August 8, 2017
    Assignee: D-Wave Systems Inc.
    Inventors: Geordie Rose, Suzanne Gildert, William G. Macready, Dominic Christoph Walliman
  • Patent number: 9727527
    Abstract: Analog processors for solving various computational problems are provided. Such analog processors comprise a plurality of quantum devices, arranged in a lattice, together with a plurality of coupling devices. The analog processors further comprise bias control systems each configured to apply a local effective bias on a corresponding quantum device. A set of coupling devices in the plurality of coupling devices is configured to couple nearest-neighbor quantum devices in the lattice. Another set of coupling devices is configured to couple next-nearest neighbor quantum devices. The analog processors further comprise a plurality of coupling control systems each configured to tune the coupling value of a corresponding coupling device in the plurality of coupling devices to a coupling. Such quantum processors further comprise a set of readout devices each configured to measure the information from a corresponding quantum device in the plurality of quantum devices.
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: August 8, 2017
    Assignee: D-Wave Systems Inc.
    Inventors: Alexander Maassen van den Brink, Peter Love, Mohammad H. S. Amin, Geordie Rose, David Grant, Miles F. H. Steininger, Paul I. Bunyk, Andrew J. Berkley
  • Patent number: 9699266
    Abstract: A computer system employs a network that between a data programming system and one or more superconducting programmable devices of a superconducting processor chip. Routers on the network, such as first-, second- and third-stage routers direct communications with the superconducting programmable devices. A superconducting memory register may load data signals received from a first-stage router into corresponding superconducting programmable devices. The system may employ additional superconducting chips, first-, second- or third-stage routers.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: July 4, 2017
    Assignee: D-Wave System Inc.
    Inventors: Geordie Rose, Paul I. Bunyk
  • Publication number: 20170177751
    Abstract: Solving computational problems may include generating a logic circuit representation of the computational problem, encoding the logic circuit representation as a discrete optimization problem, and solving the discrete optimization problem using a quantum processor. Output(s) of the logic circuit representation may be clamped such that the solving involves effectively executing the logic circuit representation in reverse to determine input(s) that corresponds to the clamped output(s). The representation may be of a Boolean logic circuit. The discrete optimization problem may be composed of a set of miniature optimization problems, where each miniature optimization problem encodes a respective logic gate from the logic circuit representation. A quantum processor may include multiple sets of qubits, each set coupled to respective annealing signal lines such that dynamic evolution of each set of qubits is controlled independently from the dynamic evolutions of the other sets of qubits.
    Type: Application
    Filed: January 30, 2017
    Publication date: June 22, 2017
    Inventors: William G. Macready, Geordie Rose, Thomas F.W. Mahon, Peter Love, Marshall Drew-Brook
  • Patent number: 9665539
    Abstract: Solving computational problems may include generating a logic circuit representation of the computational problem, encoding the logic circuit representation as a discrete optimization problem, and solving the discrete optimization problem using a quantum processor. Output(s) of the logic circuit representation may be clamped such that the solving involves effectively executing the logic circuit representation in reverse to determine input(s) that corresponds to the clamped output(s). The representation may be of a Boolean logic circuit. The discrete optimization problem may be composed of a set of miniature optimization problems, where each miniature optimization problem encodes a respective logic gate from the logic circuit representation. A quantum processor may include multiple sets of qubits, each set coupled to respective annealing signal lines such that dynamic evolution of each set of qubits is controlled independently from the dynamic evolutions of the other sets of qubits.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: May 30, 2017
    Assignee: D-Wave Systems Inc.
    Inventors: William G. Macready, Geordie Rose, Thomas F.W. Mahon, Peter Love, Marshall Drew-Brook
  • Publication number: 20170098682
    Abstract: Various techniques and apparatus permit fabrication of superconductive circuits and structures, for instance Josephson junctions, which may, for example be useful in quantum computers. For instance, a low magnetic flux noise trilayer structure may be fabricated having a dielectric structure or layer interposed between two elements or layers capable of superconducting. A superconducting via may directly overlie a Josephson junction. A structure, for instance a Josephson junction, may be carried on a planarized dielectric layer. A fin may be employed to remove heat from the structure. A via capable of superconducting may have a width that is less than about 1 micrometer. The structure may be coupled to a resistor, for example by vias and/or a strap connector.
    Type: Application
    Filed: October 10, 2016
    Publication date: April 6, 2017
    Inventors: Eric Ladizinsky, Geordie Rose, Jeremy P. Hilton, Eugene Dantsker, Byong Hyop Oh
  • Patent number: 9594726
    Abstract: Solving computational problems may include generating a logic circuit representation of the computational problem, encoding the logic circuit representation as a discrete optimization problem, and solving the discrete optimization problem using a quantum processor. Output(s) of the logic circuit representation may be clamped such that the solving involves effectively executing the logic circuit representation in reverse to determine input(s) that corresponds to the clamped output(s). The representation may be of a Boolean logic circuit. The discrete optimization problem may be composed of a set of miniature optimization problems, where each miniature optimization problem encodes a respective logic gate from the logic circuit representation. A quantum processor may include multiple sets of qubits, each set coupled to respective annealing signal lines such that dynamic evolution of each set of qubits is controlled independently from the dynamic evolutions of the other sets of qubits.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: March 14, 2017
    Assignee: D-Wave Systems Inc.
    Inventors: William G. Macready, Geordie Rose, Thomas F. W. Mahon, Peter Love, Marshall Drew-Brook
  • Publication number: 20160371227
    Abstract: Solving computational problems may include generating a logic circuit representation of the computational problem, encoding the logic circuit representation as a discrete optimization problem, and solving the discrete optimization problem using a quantum processor. Output(s) of the logic circuit representation may be clamped such that the solving involves effectively executing the logic circuit representation in reverse to determine input(s) that corresponds to the clamped output(s). The representation may be of a Boolean logic circuit. The discrete optimization problem may be composed of a set of miniature optimization problems, where each miniature optimization problem encodes a respective logic gate from the logic circuit representation. A quantum processor may include multiple sets of qubits, each set coupled to respective annealing signal lines such that dynamic evolution of each set of qubits is controlled independently from the dynamic evolutions of the other sets of qubits.
    Type: Application
    Filed: June 23, 2016
    Publication date: December 22, 2016
    Inventors: William G. Macready, Geordie Rose, Thomas F.W. Mahon, Peter Love, Marshall Drew-Brook
  • Patent number: 9490296
    Abstract: Various techniques and apparatus permit fabrication of superconductive circuits and structures, for instance Josephson junctions, which may, for example be useful in quantum computers. For instance, a low magnetic flux noise trilayer structure may be fabricated having a dielectric structure or layer interposed between two elements or layers capable of superconducting. A superconducting via may directly overlie a Josephson junction. A structure, for instance a Josephson junction, may be carried on a planarized dielectric layer. A fin may be employed to remove heat from the structure. A via capable of superconducting may have a width that is less than about 1 micrometer. The structure may be coupled to a resistor, for example by vias and/or a strap connector.
    Type: Grant
    Filed: January 5, 2015
    Date of Patent: November 8, 2016
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Eric Ladizinsky, Geordie Rose, Jeremy P. Hilton, Eugene Dantsker, Byong Hyop Oh
  • Publication number: 20160321559
    Abstract: Systems, methods and aspects, and embodiments thereof relate to unsupervised or semi-supervised features learning using a quantum processor. To achieve unsupervised or semi-supervised features learning, the quantum processor is programmed to achieve Hierarchal Deep Learning (referred to as HDL) over one or more data sets. Systems and methods search for, parse, and detect maximally repeating patterns in one or more data sets or across data or data sets. Embodiments and aspects regard using sparse coding to detect maximally repeating patterns in or across data. Examples of sparse coding include L0 and L1 sparse coding. Some implementations may involve appending, incorporating or attaching labels to dictionary elements, or constituent elements of one or more dictionaries. There may be a logical association between label and the element labeled such that the process of unsupervised or semi-supervised feature learning spans both the elements and the incorporated, attached or appended label.
    Type: Application
    Filed: June 26, 2014
    Publication date: November 3, 2016
    Inventors: Geordie Rose, Suzanne Gildert, William G. Macready, Dominic Christoph Walliman
  • Patent number: 9405876
    Abstract: Solving computational problems may include generating a logic circuit representation of the computational problem, encoding the logic circuit representation as a discrete optimization problem, and solving the discrete optimization problem using a quantum processor. Output(s) of the logic circuit representation may be clamped such that the solving involves effectively executing the logic circuit representation in reverse to determine input(s) that corresponds to the clamped output(s). The representation may be of a Boolean logic circuit. The discrete optimization problem may be composed of a set of miniature optimization problems, where each miniature optimization problem encodes a respective logic gate from the logic circuit representation. A quantum processor may include multiple sets of qubits, each set coupled to respective annealing signal lines such that dynamic evolution of each set of qubits is controlled independently from the dynamic evolutions of the other sets of qubits.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: August 2, 2016
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: William Macready, Geordie Rose, Thomas Mahon, Peter Love, Marshall Drew-Brook
  • Publication number: 20160065693
    Abstract: A computer system employs a network that between a data programming system and one or more superconducting programmable devices of a superconducting processor chip. Routers on the network, such as first-, second- and third-stage routers direct communications with the superconducting programmable devices. A superconducting memory register may load data signals received from a first-stage router into corresponding superconducting programmable devices. The system may employ additional superconducting chips, first-, second- or third-stage routers.
    Type: Application
    Filed: January 23, 2014
    Publication date: March 3, 2016
    Applicant: D-WAVE SYSTEMS INC.
    Inventors: Geordie Rose, Paul I. Bunyk
  • Publication number: 20160042294
    Abstract: Quantum processor based techniques minimize an objective function for example by operating the quantum processor as a sample generator providing low-energy samples from a probability distribution with high probability. The probability distribution is shaped to assign relative probabilities to samples based on their corresponding objective function values until the samples converge on a minimum for the objective function. Problems having a number of variables and/or a connectivity between variables that does not match that of the quantum processor may be solved. Interaction with the quantum processor may be via a digital computer. The digital computer stores a hierarchical stack of software modules to facilitate interacting with the quantum processor via various levels of programming environment, from a machine language level up to an end-use applications level.
    Type: Application
    Filed: October 22, 2015
    Publication date: February 11, 2016
    Inventors: William G. Macready, Mani Ranjbar, Firas Hamze, Geordie Rose, Suzanne Gildert
  • Patent number: 9218567
    Abstract: Quantum processor based techniques minimize an objective function for example by operating the quantum processor as a sample generator providing low-energy samples from a probability distribution with high probability. The probability distribution is shaped to assign relative probabilities to samples based on their corresponding objective function values until the samples converge on a minimum for the objective function. Problems having a number of variables and/or a connectivity between variables that does not match that of the quantum processor may be solved. Interaction with the quantum processor may be via a digital computer. The digital computer stores a hierarchical stack of software modules to facilitate interacting with the quantum processor via various levels of programming environment, from a machine language level up to an end-use applications level.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: December 22, 2015
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: William G. Macready, Mani Ranjbar, Firas Hamze, Geordie Rose, Suzanne Gildert
  • Publication number: 20150332164
    Abstract: Analog processors for solving various computational problems are provided. Such analog processors comprise a plurality of quantum devices, arranged in a lattice, together with a plurality of coupling devices. The analog processors further comprise bias control systems each configured to apply a local effective bias on a corresponding quantum device. A set of coupling devices in the plurality of coupling devices is configured to couple nearest-neighbor quantum devices in the lattice. Another set of coupling devices is configured to couple next-nearest neighbor quantum devices. The analog processors further comprise a plurality of coupling control systems each configured to tune the coupling value of a corresponding coupling device in the plurality of coupling devices to a coupling. Such quantum processors further comprise a set of readout devices each configured to measure the information from a corresponding quantum device in the plurality of quantum devices.
    Type: Application
    Filed: June 1, 2015
    Publication date: November 19, 2015
    Inventors: Alexander Maassen van den Brink, Peter Love, Mohammad H.S. Amin, Geordie Rose, David Grant, Miles F.H. Steininger, Paul I. Bunyk, Andrew J. Berkley
  • Patent number: 9134047
    Abstract: Cryogenic refrigeration employs a pulse tube cryo-cooler and a dilution refrigerator to provide very low temperature cooling, for example, to cool superconducting processors. Continuous cryogenic cycle refrigeration may be achieved using multiple adsorption pumps. Various improvements may include multiple distinct thermal-linking points, evaporation pots with cooling structures, and/or one or more gas-gap heat switches which may be integral to an adsorption pump. A reservoir volume may provide pressure relief when the system is warmed above cryogenic temperature, reducing the mass of the system. Additional heat exchangers and/or separate paths for condensation and evaporation may be provided. Multi-channel connectors may be used, and/or connectors formed of a regenerative material with a high specific heat capacity at cryogenic temperature. Flexible PCBs may provide thermal links to components that embody temperature gradients.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: September 15, 2015
    Assignee: D-Wave Systems Inc.
    Inventors: Randall C. Black, Jeremy P. Hilton, Geordie Rose
  • Publication number: 20150187840
    Abstract: Various techniques and apparatus permit fabrication of superconductive circuits and structures, for instance Josephson junctions, which may, for example be useful in quantum computers. For instance, a low magnetic flux noise trilayer structure may be fabricated having a dielectric structure or layer interposed between two elements or layers capable of superconducting. A superconducting via may directly overlie a Josephson junction. A structure, for instance a Josephson junction, may be carried on a planarized dielectric layer. A fin may be employed to remove heat from the structure. A via capable of superconducting may have a width that is less than about 1 micrometer. The structure may be coupled to a resistor, for example by vias and/or a strap connector.
    Type: Application
    Filed: January 5, 2015
    Publication date: July 2, 2015
    Inventors: Eric Ladizinsky, Geordie Rose, Jeremy P. Hilton, Eugene Dantsker, Byong Hyop Oh
  • Patent number: 9069928
    Abstract: Analog processors for solving various computational problems are provided. Such analog processors comprise a plurality of quantum devices, arranged in a lattice, together with a plurality of coupling devices. The analog processors further comprise bias control systems each configured to apply a local effective bias on a corresponding quantum device. A set of coupling devices in the plurality of coupling devices is configured to couple nearest-neighbor quantum devices in the lattice. Another set of coupling devices is configured to couple next-nearest neighbor quantum devices. The analog processors further comprise a plurality of coupling control systems each configured to tune the coupling value of a corresponding coupling device in the plurality of coupling devices to a coupling. Such quantum processors further comprise a set of readout devices each configured to measure the information from a corresponding quantum device in the plurality of quantum devices.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: June 30, 2015
    Assignee: D-Wave Systems Inc.
    Inventors: Alexander Maassen van den Brink, Peter Love, Mohammad H. S. Amin, Geordie Rose, David Grant, Miles F. H. Steininger, Paul I. Bunyk, Andrew J. Berkley