Patents by Inventor Gerhard Schrom

Gerhard Schrom has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11755048
    Abstract: A compensator is described with higher bandwidth than a traditional differential compensator, lower area than traditional differential compensator (e.g., 40% lower area), and lower power than traditional differential compensator. The compensator includes a differential to single-ended circuitry that reduces the number of passive devices used to compensate an input signal. The high bandwidth compensator allows for faster power state and/or voltage transitions. For example, a pre-charge technique is applied to handle faster power state transitions that enables aggressive dynamic voltage and frequency scaling (DVFS) and voltage transitions. The compensator is configurable in that it can operate in voltage mode or current mode.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: September 12, 2023
    Assignee: Intel Corporation
    Inventors: Sergio Carlo Rodriguez, Alexander Lyakhov, Gerhard Schrom, Keith Hodgson, Sarath S. Makala, Sidhanto Roy
  • Publication number: 20230280811
    Abstract: An electronic system includes a circuit board including a power plane. An integrated circuit (e.g., processor) is attached to a first side of the circuit board and is arranged to receive power from the power plane. A plurality of DC-to-DC converters are attached to a second side of the circuit board and are arranged to transfer power to the power plane. Each DC-to-DC converter includes a respective voltage sense input that is electrically connected to a separate location on the power plane. A telemetry circuit is coupled to each of the plurality of DC-to-DC converters and is configured to detect a quantity of power transferred to the common power plane from each of the plurality of power conversion devices.
    Type: Application
    Filed: March 2, 2023
    Publication date: September 7, 2023
    Applicant: Empower Semiconductor, Inc.
    Inventors: Trey Roessig, Timothy Alan Phillips, David Lidsky, Gerhard Schrom, Yali Xiong, Artin Der Minassians
  • Patent number: 11193961
    Abstract: Apparatuses and methods of current balancing, current sensing and phase balancing, offset cancellation, digital to analog current converter with monotonic output using binary coded input (without binary to thermometer decoder), compensator for a voltage regulator (VR), etc.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: December 7, 2021
    Assignee: Intel Corporation
    Inventors: Gerhard Schrom, J. Keith Hodgson, Alexander Lyakhov, Chiu Keung Tang, Narayanan Raghuraman, Narayanan Natarajan
  • Publication number: 20210223811
    Abstract: A compensator is described with higher bandwidth than a traditional differential compensator, lower area than traditional differential compensator (e.g., 40% lower area), and lower power than traditional differential compensator. The compensator includes a differential to single-ended circuitry that reduces the number of passive devices used to compensate an input signal. The high bandwidth compensator allows for faster power state and/or voltage transitions. For example, a pre-charge technique is applied to handle faster power state transitions that enables aggressive dynamic voltage and frequency scaling (DVFS) and voltage transitions. The compensator is configurable in that it can operate in voltage mode or current mode.
    Type: Application
    Filed: April 1, 2021
    Publication date: July 22, 2021
    Applicant: Intel Corporation
    Inventors: Sergio Carlo Rodriguez, Alexander Lyakhov, Gerhard Schrom, Keith Hodgson, Sarath S. Makala, Sidhanto Roy
  • Patent number: 11048284
    Abstract: Some embodiments include apparatuses and methods of operating such apparatuses. One of the embodiments includes an input node to receive an input voltage, a circuit portion to generate first, second, and third voltages based on the input voltage, a comparator circuit to compare the first voltage with the second voltage to generate a first signal and to compare the first voltage with the third voltage to generate a second signal, and an output circuit to generate an output signal based on the first and second signals.
    Type: Grant
    Filed: September 10, 2019
    Date of Patent: June 29, 2021
    Assignee: Intel Corporation
    Inventors: Praveen Mosalikanti, Gerhard Schrom, Vaughn J. Grossnickle, Nasser A. Kurd
  • Patent number: 10976764
    Abstract: A compensator is described with higher bandwidth than a traditional differential compensator, lower area than traditional differential compensator (e.g., 40% lower area), and lower power than traditional differential compensator. The compensator includes a differential to single-ended circuitry that reduces the number of passive devices used to compensate an input signal. The high bandwidth compensator allows for faster power state and/or voltage transitions. For example, a pre-charge technique is applied to handle faster power state transitions that enables aggressive dynamic voltage and frequency scaling (DVFS) and voltage transitions. The compensator is configurable in that it can operate in voltage mode or current mode.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: April 13, 2021
    Assignee: Intel Corporation
    Inventors: Sergio Carlo Rodriguez, Alexander Lyakhov, Gerhard Schrom, Keith Hodgson, Sarath S. Makala, Sidhanto Roy
  • Publication number: 20210080987
    Abstract: A compensator is described with higher bandwidth than a traditional differential compensator, lower area than traditional differential compensator (e.g., 40% lower area), and lower power than traditional differential compensator. The compensator includes a differential to single-ended circuitry that reduces the number of passive devices used to compensate an input signal. The high bandwidth compensator allows for faster power state and/or voltage transitions. For example, a pre-charge technique is applied to handle faster power state transitions that enables aggressive dynamic voltage and frequency scaling (DVFS) and voltage transitions. The compensator is configurable in that it can operate in voltage mode or current mode.
    Type: Application
    Filed: September 18, 2019
    Publication date: March 18, 2021
    Applicant: Intel Corporation
    Inventors: Sergio Carlo Rodriguez, Alexander Lyakhov, Gerhard Schrom, Keith Hodgson, Sarath S. Makala, Sidhanto Roy
  • Publication number: 20200264214
    Abstract: Described are apparatuses and methods of current balancing, current sensing and phase balancing, offset cancellation, digital to analog current converter with monotonic output using binary coded input (without binary to thermometer decoder), compensator for a voltage regulator (VR), etc. In one example, apparatus comprises: a plurality of inductors coupled to a capacitor and a load; a plurality of bridges, each of which is coupled to a corresponding inductor from the plurality of inductors; and a plurality of current sensors, each of which is coupled to a bridge to sense current through a transistor of the bridge.
    Type: Application
    Filed: May 4, 2020
    Publication date: August 20, 2020
    Applicant: Intel Corporation
    Inventors: Gerhard SCHROM, J. Keith HODGSON, Alexander LYAKHOV, Chiu Keung TANG, Narayanan RAGHURAMAN, Narayanan NATARAJAN
  • Patent number: 10651733
    Abstract: Described is an apparatus which comprises: a low-side switch coupled to an output node for providing regulated voltage supply; and a first driver operable to cause the low-side switch to turn off when the output node rises above a first transistor threshold voltage. Described is also a voltage regulator which comprises: a signal generator to generate a pulse-width modulated (PWM) signal; a bridge having a low-side switch coupled to an output node for providing regulated voltage supply according to the PWM signal; a first driver operable to cause the low-side switch to turn off when the output node rises above a first transistor threshold voltage; and a bridge controller to provide control signals to the first driver. The voltage regulator may operate without diode clamps and its operation is self-timed. The voltage regulator also provides tolerance against process variation.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: May 12, 2020
    Assignee: INTEL CORPORATION
    Inventors: Gerhard Schrom, Mark S. Milshtein, Alexander Lyakhov
  • Patent number: 10641799
    Abstract: Apparatuses and methods of current balancing, current sensing and phase balancing, offset cancellation, digital to analog current converter with monotonic output using binary coded input (without binary to thermometer decoder), and compensator for a voltage regulator (VR), are provided. In one example, an apparatus includes: a plurality of inductors coupled to a capacitor and a load; a plurality of bridges, each of which is coupled to a corresponding inductor from the plurality of inductors; and a plurality of current sensors, each of which is coupled to a bridge to sense current through a transistor of the bridge.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: May 5, 2020
    Assignee: Intel Corporation
    Inventors: Gerhard Schrom, J. Keith Hodgson, Alexander Lyakhov, Chiu Keung Tang, Narayanan Raghuraman, Narayanan Natarajan
  • Publication number: 20200004286
    Abstract: Some embodiments include apparatuses and methods of operating such apparatuses. One of the embodiments includes an input node to receive an input voltage, a circuit portion to generate first, second, and third voltages based on the input voltage, a comparator circuit to compare the first voltage with the second voltage to generate a first signal and to compare the first voltage with the third voltage to generate a second signal, and an output circuit to generate an output signal based on the first and second signals.
    Type: Application
    Filed: September 10, 2019
    Publication date: January 2, 2020
    Inventors: Praveen Mosalikanti, Gerhard Schrom, Vaughn J. Grossnickle, Nasser A. Kurd
  • Patent number: 10483249
    Abstract: Embodiments are generally directed to integrated passive devices on chip. An embodiment of a device includes a semiconductor die; a semiconductor die package, a first side of the package being coupled with the semiconductor die; and one or more separate dies to provide passive components for operation of the semiconductor die, wherein the passive components for operation of the semiconductor die includes inductors.
    Type: Grant
    Filed: December 26, 2015
    Date of Patent: November 19, 2019
    Assignee: Intel Corporation
    Inventors: Donald S. Gardner, Edward A. Burton, Gerhard Schrom, Larry E. Mosley
  • Patent number: 10423182
    Abstract: Some embodiments include apparatuses and methods of operating such apparatuses. One of the embodiments includes an input node to receive an input voltage, a circuit portion to generate first, second, and third voltages based on the input voltage, a comparator circuit to compare the first voltage with the second voltage to generate a first signal and to compare the first voltage with the third voltage to generate a second signal, and an output circuit to generate an output signal based on the first and second signals.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: September 24, 2019
    Assignee: Intel Corporation
    Inventors: Praveen Mosalikanti, Gerhard Schrom, Vaughn J. Grossnickle, Nasser A. Kurd
  • Patent number: 10374614
    Abstract: Some embodiments include apparatuses and methods using the apparatuses. Some of the apparatuses include a phase frequency detector to generate output information having a value based on a relationship between a first clock signal and a second clock signal, a memory element to store the values of the output information, a digital control oscillator to generate the second clock signal having a phase and frequency based on a digital code, the digital code having a value based on control information, and circuitry to generate the control information based on conditions determined at least from the values stored in the memory element.
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: August 6, 2019
    Assignee: Intel Corporation
    Inventors: Gerhard Schrom, Sarath Makala, Kowshik Gandham, Chun Lee
  • Patent number: 10367409
    Abstract: Described herein is an apparatus and system for generating a signal with phase angle configuration. The apparatus comprises an array of switch-resistors, each switch resistor to receive a control signal, wherein the array of switch-resistors to generate an output signal; and a circuit to configure phase angle of the output signal. The apparatus can be used for different package and inductor configurations. The apparatus provides flexibility to mitigate switching noise by adjusting phase angles, and provides the ability to enable and disable switch-resistors on the fly without ripples. The apparatus also saves power consumption by selectively turning off switch-resistors when phases are disabled. The output signal of the apparatus has smooth triangular waveforms for improving the quality of power supply generated using the output signal. Overall, the apparatus exhibits reduced sensitivity to process variations compared to traditional signal generators.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: July 30, 2019
    Assignee: INTEL CORPORATION
    Inventors: Gerhard Schrom, Narayanan Raghuraman, Fabrice Paillet
  • Patent number: 10354786
    Abstract: Embodiments are generally directed to hybrid magnetic material structures for electronic devices and circuits. An embodiment of an inductor includes a first layer of magnetic film material applied on a substrate, one or more conductors placed on the first layer of magnetic film material, and a second layer of magnetic particles, wherein the magnetic particles are suspended in an insulating medium.
    Type: Grant
    Filed: October 1, 2016
    Date of Patent: July 16, 2019
    Assignee: Intel Corporation
    Inventors: Donald S. Gardner, Gerhard Schrom, Edward A. Burton
  • Publication number: 20190199358
    Abstract: Some embodiments include apparatuses and methods using the apparatuses. Some of the apparatuses include a phase frequency detector to generate output information having a value based on a relationship between a first clock signal and a second clock signal, a memory element to store the values of the output information, a digital control oscillator to generate the second clock signal having a phase and frequency based on a digital code, the digital code having a value based on control information, and circuitry to generate the control information based on conditions determined at least from the values stored in the memory element.
    Type: Application
    Filed: December 26, 2017
    Publication date: June 27, 2019
    Inventors: Gerhard Schrom, Sarath Makala, Kowshik Gandham, Chun Lee
  • Publication number: 20190154739
    Abstract: Described are apparatuses and methods of current balancing, current sensing and phase balancing, offset cancellation, digital to analog current converter with monotonic output using binary coded input (without binary to thermometer decoder), compensator for a voltage regulator (VR), etc. In one example, apparatus comprises: a plurality of inductors coupled to a capacitor and a load; a plurality of bridges, each of which is coupled to a corresponding inductor from the plurality of inductors; and a plurality of current sensors, each of which is coupled to a bridge to sense current through a transistor of the bridge.
    Type: Application
    Filed: January 22, 2019
    Publication date: May 23, 2019
    Applicant: Intel Corporation
    Inventors: Gerhard SCHROM, J. Keith HODGSON, Alexander LYAKHOV, Chiu Keung TANG, Narayanan RAGHURAMAN, Narayanan NATARAJAN
  • Patent number: 10184961
    Abstract: Described are apparatuses and methods of current balancing, current sensing and phase balancing, offset cancellation, digital to analog current converter with monotonic output using binary coded input (without binary to thermometer decoder), compensator for a voltage regulator (VR), etc. In one example, apparatus comprises: a plurality of inductors coupled to a capacitor and a load; a plurality of bridges, each of which is coupled to a corresponding inductor from the plurality of inductors; and a plurality of current sensors, each of which is coupled to a bridge to sense current through a transistor of the bridge.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: January 22, 2019
    Assignee: Intel Corporation
    Inventors: Gerhard Schrom, J. Keith Hodgson, Alexander Lyakhov, Chiu Keung Tang, Narayanan Raghuraman, Narayanan Natarajan
  • Publication number: 20190006334
    Abstract: Embodiments are generally directed to integrated passive devices on chip. An embodiment of a device includes a semiconductor die; a semiconductor die package, a first side of the package being coupled with the semiconductor die; and one or more separate dies to provide passive components for operation of the semiconductor die, wherein the passive components for operation of the semiconductor die includes inductors.
    Type: Application
    Filed: December 26, 2015
    Publication date: January 3, 2019
    Inventors: Donald S. GARDNER, Edward A. BURTON, Gerhard SCHROM, Larry E. MOSLEY